

	Приложение * №2
	к разрешению на выброс вредных
	(загрязняющих) веществ в атмосферный
воздух от "_	15 "мая 2017 г. № 46,
выданному	Государственной инспекцией по экологии и природопользованию Пермского края
	(наименование территориального органа государственного экологического надзора)
	Экз. №
Условия действа разрешения на выброс вредных (загрязняющих	
	, , , , , , , , , , , , , , , , , , , ,
ООО "Урал-ремстройсервис"	· · · · · · · · · · · · · · · · · · ·
(наименование юридического лица или фамилия, и индивидуального предпринимателя)	мя, отчество

1. Выброс загрязняющих веществ в атмосферный воздух, не указанных в разрешении на выброс вредных (загрязняющих) веществ в атмосферный воздух и в условиях действия разрешения на выброс вредных (загрязняющих) веществ в атмосферный воздух, не разрешается.

ООО "Урал-ремстройсервис" промплошадка №2 (наименование отдельной производственной территории, Пермский край, Усольский р-он, Романовское сельское поселение фактический адрес осуществления деятельности)

- 2. Соблюдение нормативов предельно допустимых и при установлении временно согласованных выбросов вредных (загрязняющих) веществ в атмосферный воздух должно обеспечиваться на каждом источнике выбросов загрязняющих веществ в атмосферный воздух в соответствии с утвержденными в установленном порядке нормативами допустимых выбросов по конкретным источникам.
- Выполнение в установленные сроки утвержденного плана мероприятий по снижению выбросов загрязняющих в атмосферный воздух.
- 4. Перечень загрязняющих веществ и показатели их выбросов, не подлежащие пормированию и государственному учету.

Наименование загрязняющих веществ		Выброс	ы загрязняю	ощих вещест	В, т/г	
	2017 г., т/г	2018 г., т/г	2019 г., т/г	2020 г., т/г	2021 г.,	2022 г., т/г

Является неотъемлемой частью разрешения на выброс вредных (загрязняющих) веществ в атмосферный воздух, выдаваемого территориальным органом государственного экологического надзора.

Приложение 1 № 3	к разрешению на выброс вредных	ositys of " 15 " Mas 20 17 r. No 46	иланному Государственной инспекцией по экологии и	триродопользованию Пермского края	(наименование территориального органа	государственного экологического контроля)	N CAS
		здух	иданн				

На основании приказа Управления Росприроднадзора по Пермскому краю от " 21 " марта 20 17 г. № 220 "Об утверждении пормативов выбросов вредных (загразнятопих) вещесть (за исключенкем радиоактивных) в атмосферный выздух стащеонарым сторчимов выбросов, пакодящимся по объеттах хозяйственной и илой деятельности, не подлежащих федеральному государственному экологическому наизору"

Нормативы выбросов вредных (загрязняющих) веществ в атмосферный воздух по конкретным источникам и веществам * ООО "Урал-ремстройсервис"

(наименование юридического пипа или фамилия, имм, отчество индивилуального предприниматсля)	ООО "Урая-ремстройссрвис" промплощадка №2	наименование отдельной производственной территории,	Термский край, Усольский р-он, Романовское сельское поселение	аметический япрес окупначиления лезтейъностя
(наименование юридического пица или фамилия,	ООО "Урал-ремстрой	(наименованис отдельно	Пермский край, Усольский р-он	Martineskii amos oso
	21			

Норматив выбросов 2 018 г. 2 019 г. 2 019 г. 2 г/с т/г ПДВ/ г/с т/г ПДВ/ г/с г/с Т/г ПДВ/ г/с г/с Т/г ПДВ/ г/с г/с Т/г ПДВ/ г/с	Mg Норматив выброс нст. 2 017 г. 2 018 г. 2 019 г. г/с г/г т/г т/г<	2 017 г. 2 018 г. 2 019 г. 2 019 г. 1ДВ/ г/с т/г ПДВ/ г/с г/г ПДВ/ г/с 1ДВ/ г/с г/г г/с пДВ/ г/с г/г	г. 2 018 г. 2 019 г. 2 019 г. 2 17/R 11ДВ/ г/с г/г ПДВ/ г/с г/г ПДВ/ г/с г/г ПДВ/ г/с	Дорматив выброс ТДВ/ т/с т/г ПДВ/ т/с т/г ПДВ/ т/с	2 018 г. 2 019 г. 2 019 г. т/г ПДВ/ г/с г/г ПДВ/ г/с г/г г/г	1018 г. 2 019 г. Т/Г Т/ДВ/ т/с Т/Г Т/ДВ/ т/с	Норматив выброс 2 019 г. ПДВ/ г/с г/г г/г г/с	Дормагив выброс 2 019 г. г/г г/с	Норматив выброс 019 г. г/г т/г г/г	орматив выбросон 2 0. ПДВ/ г/с т	выбросов 2 0 г/с т	E 7	020 r	идв/	, 1/c	2 021 r.	пдв/	2/1	2 022 r.	идв/
BCB BCB	BCB BCB BCB	BCB BCB BCB	BCB BCB BCB	BCB BCB	BCB BCB	BCB BCB	BCB	BCB	BCB		t.			BCB	7	17	BCB	2	ć.	BCB
(B nenecy, Ha	(0123) Weneya Okon (8 nenecy, Ha	5 6 7 8 9 10 (1 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	(0123) Женеча оксил (в пересч. на	(0123) Weneya oxena (8 nebecy, Ha	(0123) Женеча оксил (в пересу, на	(0123) Weneya oxeng (8 nepect. Ha	12 (в переся, на	12 (в переся, на	12 (в переся, на	переся, на Fe)	ra Fe)		†	3	01	7 (0	۲۶ ا	77	3
16x 6 6209 0.068 0.813 11ДB 0.068 0.813 11ДB 0.068 0.813 11ДB 0.068	0.068 0.813 ITAB 0.068 0.813 ITAB 0.068 0.813 ITAB	0.068 0.813 ITAB 0.068 0.813 ITAB 0.068 0.813 ITAB	ПДВ 0,068 0,813 ПДВ 0,068 0,813 ПДВ	0,068 0,813 ПДВ 0,068 0,813 ПДВ	,068 0,813 ПДВ 0,068 0,813 ПДВ	ПДВ 0,068 0,813 ПДВ	з пдв	з пдв	з пдв	пдв 0,06	0,06	20	0,813	пдв	0,068	0,813	пдв	0,068	0,813	ПДВ
3B X X 0,813 X X 0,813 X X 0,813 X	X X 0,813 X X 0,813 X X 0,813 X	0,813 X X 0,813 X X 0,813 X	X X 0,813 X X 0,813 X	X 0,813 X X 0,813 X	0,813 X X 0,813 X	X 0,813 X	X 0,813 X	0,813 X	Х		-	X	0,813	×	×	0,813	×	×	0,813	\times
(0)43) Марганец и его соедине	(0)43) Марганец и его соедине	(0143) Марганец и его соединения	(0143) Марганец и его соединения	(0143) Марганец и его соединения	(0143) Марганец и сго соединения	(0143) Марганец и его соединения	(0143) Марганец и его соединения	Марганец и его соединения	ісц и его соединения	соединених	ния	-						1		İ
пдв	6,001 0,005 ПЛВ 0,001 0,005 ПДВ 0,001 0,005 ПДВ	0,005 ПЛВ 0,001 0,005 ПДВ 0,001 0,005 ПДВ	ПЛВ 0,001 0,005 ПДВ 0,001 0,005 ПДВ	0,001 0,005 ПДВ 0,001 0,005 ПДВ	,001 0,005 ПДВ 0,001 0,005 ПДВ	пдв 0,001 0,005 пдв	0,001 0,005 ПДВ	0,005 ПДВ	ПДВ	T	o	0,001	0,005	пдв	0,001	0,005	TIB	_	0,005	ПДВ
Всего по 3B X X 0,005 X X 0,005 X X 0,005 X	X 0,005 X X 0,005 X X 0,005 X	0,005 X X 0,005 X X 0,005	X X 0,005 X X X 0,005	X 0,005 X X 0,005	0,005 X X 0,005	X X 0,005	X 0,005	5000		×	ĺ	×	0,005	×	×	0,005	×	×	0,005	×
	(0301)	(0301)	(0301)	(0301) Азота диоксид	(0301) Азота диоксид	(0301) Азота диоксид	(0301) Азота диоксид	(0301) Азота диоксид	4зота диоксид	оксил										
0 NAB 0,009 0,009 0,009 0,009 0,009 0,009 0,096 IIAB 0,009 0,096 IIAB	ETI 960'0 600'0 ETI 960'0 600'0 ETI 960'0 600'0	8世日 600,0 600,0 田田 600,0 600,0 日日日 600,0	ВДП 960,0 600,0 ВДП 960,0 600,0 ВДП	ВДП 360,0 600,0 ВДП 360,0 600,0	ВДП 960,0 600,0 ВДП 960,0 600,	ПДВ 0,009 0,096 ПДВ	еди 960°0 600°0	960'0 HAB	пдв		0	600'0	960,0	пдв	0,009	960,0	ПДВ	0,009	960'0	пдв
0,038 0,03 11ДB 0,038 0,03 ПДВ 0,038 0,03 IIДB	0,038 0,03 11ДB 0,038 0,03 ПДВ 0,038 0,03 IIДB	0,038 0,03 11ДB 0,038 0,03 ПДВ 0,038 0,03 ПДВ	11ДB 0,038 0,03 ПДВ 0,038 0,03 ПДВ	0,038 0,03 IIAB 0,038 0,03 IIAB	,038 0,03 ПДВ 0,038 0,03 ПДВ	ПДВ 0,038 0,03 ПДВ	0,038 0,03 ПДВ	0,03 ПДВ	пдв	\dashv	0	0,038	0,03	пдв	0,038	0,03	TITIB	0,038	0,03	пдв
6220 0,032 0,068 ПДВ 0,032 0,068 ПДВ 0,032 0,068 ПДВ	0,032 0,068 ПДВ 0,032 0,068 ПДВ 0,032 0,068 ПДВ	0,032 0,068 ПДВ 0,032 0,068 ПДВ 0,032 0,068 ПДВ	ПДВ 0,032 0,068 ПДВ 0,032 0,068 ПДВ	0,032 0,068 IIAB 0,032 0,068 IIAB	0,068 ПДВ 0,032 0,068 ПДВ	ПДВ 0,032 0,068 ПДВ	0,032 0,068 пдв	0,068 пдв	пдв		0	0,032	0,068	ПДВ	0,032	890,0	ПДВ	0,032	890,0	II TIB
6209 0,593 0,024 ПДВ 0,593 0,024 ПДВ 0,593 0,024 ПДВ	0,593 0,024 ПДВ 0,593 0,024 ПДВ 0,593 0,024 ПДВ	0,593 0,024 ПДВ 0,593 0,024 ПДВ 0,593 0,024 ПДВ	0,024 ПДВ 0,593 0,024 ПДВ 0,593 0,024 ПДВ	0,593 0,024 ПДВ 0,593 0,024 ПДВ	0,024 ПДВ 0,593 0,024 ПДВ	ПДВ 0,593 0,024 ПДВ	0,593 0,024 ПДВ	0,024 ПДВ	ПДВ		~	0,593	0,024	ПДВ	0,593	0,024	ПДВ	0,593	0,024	11,TIB
6209 0,014 0,032 ПДВ 0,014 0,032 ПДВ 0,014 0,032 ПДВ	0,014 0,032 IIДB 0,014 0,032 IIДB 0,014 0,032 IIДB	0,014 0,032 IIДB 0,014 0,032 IIДB 0,014 0,032 IIДB	0,032 ПДВ 0,014 0,032 ПДВ 0,014 0,032 ПДВ	0,014 0,032 ПДВ 0,014 0,032 ПДВ	,014 0,032 ПДВ 0,014 0,032 ПДВ	ПДВ 0,014 0,032 ПДВ	0,014 0,032 ПДВ	0,032 пдв	пдв		_	0,014	0,032	пдв	0,014	0,032			0,032	nthB
6209 0,0006 0,007 II 0,0006 0,007 II 0,0006 0,007 II II 日本 1 日本 1 日本 1 日本 1 日本 1 日本 1 日本	0,0006 0,007 ИДВ 0,0006 0,007 ИДВ 0,0006 0,007 ИДВ	0,0006 0,007 ИДВ 0,0006 0,007 ИДВ 0,0006 0,007 ИДВ	0,007 ИДВ 0,0006 0,007 ИДВ 0,0006 0,007 ИДВ	0,0006 0,007 ПДВ 0,0006 0,007 ПДВ	0,007 ПДВ 0,0006 0,007 ПДВ	0,007 ПДВ 0,0006 0,007 ПДВ	0,0006 0,007 叮珥B	0,007 叮珥B	пдв		0	9000'0	0,007	пдв	9000'0	0,007	-	2	0,007	ET I
6209 0,03 0,219 ПДВ 0,03 0,219 ПДВ 0,03 0,219 ПДВ	0,03 0,219 ПДВ 0,03 0,219 ПДВ 0,03 0,219 ПДВ	0,219	ПДВ 0,03 0,219 ПДВ 0,03 0,219 ПДВ	0,03 0,219 пдв 0,03 0,219 пдв	0,219 ПДВ 0,03 0,219 ПДВ	пдв 0,03 0,219 пдв	0,03 0,219 ПДВ	0,219 ПДВ	пдв			0,03	0,219	TITIB	0,03	0,219	ETB	\dashv	0,219	ETTE
205 0,041 0,412 IIAB 0,041 0,412 IIAB 0,041 0,412 IIAB	0,041 0,412 II II 0,041 0,412 II II 0,041 0,412 II	0,412	ПДВ 0,041 0,412 ПДВ 0,041 0,412 ПДВ	0,041 0,412 IIДB 0,041 0,412 IIДB	,041 0,412 ПДВ 0,041 0,412 ПДВ	ПДВ 0,041 0,412 ПДВ	0,041 0,412 ПДB	0,412 ПДB	пдв	-1	٦,	0,041	0,412		0,041	0,412	IIIB	_	0,412	ПДВ
3B X X 0,888 X X 0,888	X 0,888 X X 0,888 X X 0,888	888 X X 0,888 X X 0,888	X X 0,888 X X 0,888	X 0,888 X X 0,888	0,888 X X 0,888	X X 0,888	X 0,888	0,888		×		×	0,888	×	×	0,888	×	×	888	×
(0304) Азога оксид	(0304) Азога оксид	(0304) Азога оксид	(0304) Азога оксид	Азота оксид	Азота оксид	Азота оксид	Азота оксид	Азота оксид	Азота оксид	10								Ī	-	
цект склад пребит 6203 0,001 0,016 ПДВ 0,001 0,016 ПДВ 0,001 0,016 ПДВ	0,001 0,016 IIJB 0,001 0,016 IIJB 0,001 0,016	0,016 IIAB 0,001 0,016 IIAB 0,001 0,016	ПДВ 6,001 0,016 ПДВ 6,001 0,016	0,001 0,016 ПДВ 0,001 0,016	,001 0,016 ПДВ 0,001 0,016	11ДВ 0,001 0,016	0,001 0,016	0,016	\Box	пдв		0,001	0,016	TITE	0,001	0,016	TAB	0,001	0,016	LITB
цсх 5 6208 0,006 0,005 ПДВ 0,006 0,005 ПДВ 0,006 0,005 ПДВ	0,006 0,005 IIAB 0,006 0,005 IIAB 0,006 0,005	0,006 0,005 ПДВ 0,006 0,005 ПДВ 0,006 0,005	ПДВ 0,006 0,005 ПДВ 0,006 0,005	0,006 0,005 NAB 0,006 0,005	,006 0,005 NAB 0,006 0,005	ПДВ 0,006 0,005	0,006 0,005	0,005		ПДВ		900,0	0,005	TITIB	900.0	0,005	ПДВ		0,005	HIJB
110x 5 6220 0,005 0,011 TIAB 0,005 0,011 TIAB 0,005 0,011 TIAB	0,005 0,011 ПДВ 0,005 0,011 ПДВ 0,005 0,011	0,011 ПДВ 0,005 0,011 ПДВ 0,005 0,011	TI从B 0,005 0,011 TI从B 0,005 0,011	0,005 0,011 TIMB 0,005 0,011	0,011 IIAB 0,005 0,011	ПДВ 0,005 0,011	0,005 0,011	0,011		ПДВ		0,005	0,011	пдв	0,005	0,011	-		0,011	ПДВ
6209 0,096 0,004 ПДВ 0,096 0,004 ПДВ 0,096 0,004	0,096 0,004 ПДВ 0,096 0,004 ПДВ 0,096 0,004	0,004 IIAB 0,096 0,004 IIAB 0,096 0,004	ПДВ 0,096 0,004 ПДВ 0,096 0,004	0,096 0,004 ПДВ 0,096 0,004	0,004 ПДВ 0,096 0,004	ПДВ 0,096 0,004	0,096 0,004	0,004	_	ПДВ		960'0	0,004	\neg		0,004	\dashv		0,004	пдв
6209 0,002 0,005 ПДВ 0,002 0,005 ПДВ 0,002 0,005 ПДВ	0,002 0,005 ПДВ 0,002 0,005 ПДВ 0,002 0,005 ПДВ	0,002 0,005 ПДВ 0,002 0,005 ПДВ 0,002 0,005 ПДВ	ПДВ 0,002 0,005 ПДВ 0,002 0,005 ПДВ	0,002 0,005 ПДВ 0,002 0,005 ПДВ	0,005 ПДВ 0,002 0,005 ПДВ	ПДВ 0,002 0,005 ПДВ	0,002 0,005 ПДВ	0,005 ПДВ	TIJB		ુ :	0,002	0,005		-+	0,005		1	0,005	ETTE
6209 0,0001 0,001 ПДВ 0,0001 0,001 ПДВ 0,0001 0,001	0,0001 0,001 ПДВ 0,0001 0,001 ПДВ 0,0001 0,001	0,0001 0,001 ПДВ 0,0001 0,001 ПДВ 0,0001 0,001	ПДВ 0,0001 0,001 ПДВ 0,0001 0,001	0,0001 0,001 ПДВ 0,0001 0,001 ПДВ	0,001 ПДВ 0,0001 0,001 ПДВ	пдв 0,0001 0,001 пдв	0,0001 0,001 11月3	0,001 IIIB	ПДВ		9	0,0001	0,001	II TIB	0,0001	1000		_	0,001	ПДВ
6209 0,005 0,036 ПДВ 0,005 0,036 ПДВ 0,005 0,036 ПДВ	0,005 0,036 ПДВ 0,005 0,036 ПДВ 0,005 0,036 ПДВ	0,005 0,036 ПДВ 0,005 0,036 ПДВ 0,005 0,036 ПДВ	ПДВ 0,005 0,036 ПДВ 0,005 0,036 ПДВ	0,005 0,036 ПДВ 0,005 0,036 ПДВ	0,036 ПДВ 0,005 0,036 ПДВ	ПДВ 0,005 0,036 ПДВ	0,005 0,036 ПДВ	0,036 口ДB	ПДВ		0	0,005	0,036	пдв	0,005	0,036	ПДВ		0,036	пдв
205 0,007 0,067 IIДB 0,007 0,067 IIДB 0,007 0,067 IIДB	0,007 0,067 IIJB 0,007 0,067 IIJB 0,007 0,067 IIJB	0,007 0,067 IIJB 0,007 0,067 IIJB 0,007 0,067 IIJB	ПДВ 0,007 0,067 ПДВ 0,007 0,067 ПДВ	0,007 0,067 ПДВ 0,007 0,067 ПДВ	00.7 0,067 IIAB 0,00.7 0,067 IIAB	ПЛВ 0,007 0,067 ПДВ	の,007 0,067 口ДB	0,067 ПДВ	пдв		Ö	0,007	0,067	ПДВ	0,007	0,067	ПДВ	0,007	0,067	пдв
3B X X 0.145 X X 0.145 X X 0,145 X	X 0.145 X X 0.145 X X 0.145 X	0.145 X X 0,145 X X 0,145 X	X X 0,145 X X 0,145 X	X 0,145 X X 0,145 X	0,145 X X 0,145 X	X X 0,145 X	X 0,145 X	0,145 X	×			×	0,145	×	×	0,145	×	×	0,145	×
						(0328) Сажа	(0328) Сажа	(0328) Сажа	128) Сажа	я							Who has a property of the control of			
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6203 0,001 0,01 17AB 0,001 0,01 17AB 0,001 0,01 17AB	0,001 0,01 IIAB 0,001 10,0 IIAB 0,001 0,01 IIAB	ПДВ 0,001 0,01 ПДВ 0,001 0,01 ПДВ	0,001 0,01 ПДВ 0,001 0,01 ПДВ	001 0,01 ПДВ 0,001 0,01 ПДВ	ПДВ 0,001 0,01 ПДВ	0,001 0,01 IIJB	0,01 ПДВ	ПДВ		_	0,001	10,0	пдв	0,001	0,01	пдв	100,0	0,01	ПДВ
6208 0,024 0,016 ПДВ 0,024 0,016 ПДВ 0,024 0,016 ПДВ	6208 0,024 0,016 ПДВ 0,024 0,016 ПДВ 0,024 0,016 ПДВ	0,024 0,016 ПДВ 0,024 0,016 ПДВ 0,024 0,016 ПДВ	ПДВ 0,024 0,016 ПДВ 0,024 0,016 ПДВ	0,024 0,016 ПДВ 0,024 0,016 ПДВ	,024 0,016 ПДВ 0,024 0,016 ПДВ	ПДВ 0,024 0,016 ПДВ	0,024 0,016 ПДВ	0,016 口ДВ	ПДВ	-	-	0,024	910'0	пдв	0,024	0,016	ПДВ	0,024	0,016	ΠĮĮΒ

æ	m)	g.	ET.	Д	ار		8)	<u>m</u>	<u>m</u>	<u>B</u>	B	<u>m</u>	<u>m</u>			ற	Œ			g	B	<u>B</u>	<u>n</u>	g	g	(B	<u>B</u>			<u>n</u>			e	
ETTER	altu	пдв	пдв	ПДВ	× _		II/JB	ιπя	ПДВ			ETT1	TITIB	×		5 TIMB	TITB	\times						_	4			× _		TJTB	×	-		×
0,036		0,001	0,017	0,013	0,094		0,017	0,006	0,014			0,024	-	0,074		1,0E-06 4,0E-06	2,0E-06 0,0001	0,0001		0,249	0,219	0,499	0,025	0,088	0,015	1,357	0,569	3,021		0,007	0,007			0,002
0,02	0,028	0,0001	0,002	0,001	×		0,002	0,008	0,007	0,232	0,0001	0,004	0,0001	×		1,0E-06	2,0E-06	×		0,024	0,314	0,262	0,598	0,023	0,001	0,824	0,055	×		0,001	×		0,0003	×
ТДВ	ETTU	пдв	пдв	ПДВ	X		пдв	ПДВ	ПДВ	пдв	пдв	пдв	пдв	×		пдв	пдв	×	3	ПДВ	ПДВ	ПДВ	II/IB	ПДВ	EITIB	ПДВ	ПДВ	×		ПДВ	×		ПДВ	×
0,036	0,001	0,001	0,017	0,013	0,094	-10	0,017	0,006	0,014	0,01	0,002	0,024	0,001	0,074		1,0E-06 4,0E-06	0,0001	0,0001		0,249	0,219	0,499	0,025	0,088	0,015	1,357	0,569	3,021		0,007	0,007		0,002	0,002
0,02	0,028	0,0001	0,002	0,001	×		0,002	0,008	0,007	0,232	0,0001	0,004	0,0001	×	86	1,0E-06	2,0E-06 0,0001	×		0,024	0,314	0,262	865,0	0,023	0,001	0,824	0,055	×		0,001	×		0,0003	×
ПЛВ	ПДВ	пдв	пдв	пдв	×		пдв	пдв	пдв	пдв	пдв	TITB	~	×		ПДВ	пдв	×		пдв	пдв	пдв	щв	ПДВ	ПДТВ	ПДВ	ПДВ	×		ПДВ	X	1	۵	×
0,036	0,001	0,001	0,017	0,013	0,094		0,017	90000	0,014	0,01	0,002	0,024	0,001	0,074		4,0E-06	0,0001	0,0001		0,249	0,219	0,499	0,025	0,088	0,015	1,357	0,569	3,021		0,007	0,007		0,002	0,002
0,02	0,028	0,0001	0,002	0,001	×		0,002	800,0	0,007	0,232	0,0001	0,004	0,0001	×		1,0E-06 4,0E-06	2,0E-06 0,0001	X		0,024	0,314	0,262	0,598	0,023	0,001	-	5	×		0,001	×	1bre	0,0003	×
пдв	пдв	ПДВ	пдв	ПДВ	×	сид	пдв	пдв	ПДВ	ПДВ	ПДВ	ПДВ	пдв	×	род	ाप्रक्ष ।	пдв (2	X	оксид	ПДВ	ПДВ	пдв	пдв	пдв	пдв		пдв	×	(0342) Фториды газообразные	ПДВ	X	Фториды плохорастворимые	TITE (×
0,036	0,001	0,001	0,017	0,013	0,094	Серы диоксид	0,017	0,006	0,014	0,01	0,002	0,024	0,001	0,074	(0333) Сероводород		0,0001	0,0001	Углерода (0,249	0,219	0,499	0,025	0,088	0,015	1,357	695,0	3,021	ды газо	0,007	0,007	плохор	0,002	0,007
0,02	0,028	0,0001	0,002	0,001	×	(0330) C	0,002	0,008	0,007	0,232	0,0001	0,004	0,0001	×	(0333)	1,0E-06 4,0E-06	2,0E-06 C	×	(0337) Yr	0,024	0,314	0,262	0,598	0,023	0,001	0,824	0,055	×	дотф (0,001	X	Эториды	0,0003	×
IIIB	пдв (пдв 0	пдв	пдв (×		пдв (пдв (пдв (пдв (пдв 🛮 0	пдв (пдв 🛮 0	X		ПДВ	пдв 2	×))	пдв (пдв (11 (B)	пдв (TIJIB (пдв (TIJIB (пдв (X	(0342	пдв (X	(0344) d	пдв 0	×
0,036	0,001	0,001	0,017	0,013	0,094		0,017	900,0	0,014	0,01	0,002	0,024	0,001	0,074			0,0001	0,0001		0,249	0,219	0,499	0,025	0,088	0,015	1,357	0,569	3,021		0,007	0,007		0,002	0,002
0,02	_	0,0001			×		0,002	-					1000	×		OE-06 4,0E-06	E-06	×		0,024	_	0,262		023	100	824	0,055 (X		100	×		003	
плв	П	1 V					пдв	TITIB	O ETT	пдв (100000	пдв 0,		×		11,01 all 11,01	11,TB [2,0]	0 82		TIJIB	TIMB	TITIB		TIZE (пдв	×		пдв 0,	×		пдв 0,0	×
0.036	├	H	0,017		-		0,017	0,006	. 8				100,0	0,074						0,249	0,219	0,499 I			0,015 I	1,357 I	0,569 I	3,021		0,007	-		0,002	
0.02	-			-	-		0,002 0	0 800,0	_	0,232 (0,004 0	0,0001	0 X	İ	1,0E-06 4,0E-06	2,0E-06 0,0001	,0 X		0,024 0	0,314 0					0,824	0,055 0	-		0,001 0	-		0,0003 0	
\perp	+			_	╁┈				6220 0,0	6209 0,3	6209 0,0001		5 0,0			-	1				6208 0,3	6220 0,2	6209 0,	90,0	0,0			 						
6220	6209	62(6209	205	-	-	ы 62(62(62.	62(620	6209	205	-		206	6207	1	-	tr 6203		62,	62(6209	6209	6209	205			6209	+		6209	-
uex 5		9 хэп	uex 6	пех 9	Beero 110 3B		цех 1 склад цебня 6203	uex 5	uex 5	dex 6	9 xan	9 xan	6 xan	Всего по 3В		uex 3	uex 4	Всего по ЗВ		цех 1 склад шебня	цех 5	uex 5	9 xan	9 хэл	9 xan	9 xan	6 xan	Всего по 3В		9 хэп	Всего по ЗВ		nex 6	Rearo no 3B
3	4	S	9	7	-	1	-		3	4	5	9	7			-	51			1	$\overline{}$	ć	4	S	9	7	8	1		_			_	F

	08 IIIB	-07 ПДВ	V 10-		03 ПДВ	03 X		6 IIJB	X 99		4 TIJB	5 ПДВ	79 ПДВ			77 ПДВ	X X)2 II/IB	96 ПДВ	× 88			00-00		-	-						13 T.ZTB
	7,0E-07 3,0E-08	1,0E-08 1,0E-07	X 1,0E-07		0,007 0,0003	د 0,0003		0,104 0,066	X 0,066		0.004 0.04	51 0,035	42 0,079	0,0002 0,002		0,16 0,007	0,287		0,0004 0,002	01 0,026	0,028	- 1			4			-+			0,004 0,095	-	0,002 0,063
	ПДВ 7,0Е	TUTB 1,0E	×		пдв 0,0	X		ПДВ 0,1	X		пдв 0.0	пдв 0,051	ПДВ 0,042	ПДВ 0,00	ग्रमुष्ठ 0,015	TIMB 0,	X		пдв 0,00	пдв 0,001	X	1		2000	+				IIUB 0,002	ПДВ 0,002	пдв 0,0	пдв 0,002	пдв 0,0
			1,0E-07		0,0003 П,	0,0003		0,066 П,	0,066			0,035 II,		0,002	0,124 П,	0,007	0,287		0,002	0,026 П,	0,028		0,063 П,	3 6.0			-	0,063 П,	0,063 11,	0,063 Π,	0,095 П,	0,063 П,	0,063 II,
	7,0E-07 3,0E-08	1,0E-08 1,0E-07	X 1,0		0,007 0,0),(X		0,104 0,	, 0,		0,004 0	0,051 0,	0,042 0,	0,0002 0,	0,015 0,	0,16 0,	× o		0,0004 0,	0,001 0,	X 0,		0,002 0,	0,003 0,		-	-2201	0,002 0,	0,002 0,	0,002 0,	0,004 0,	0,002 0,	0,002 0,
	17. ETT	ग्रस ।,(×		ाग्रा ०	×		ग्रम्भ ०	×	The second second	11.XTB 0	nab 0	пдв о	пдв 0,	пдв	ग्राम्छ । (×		пдв 0,	пдв 0	×		II 加B 0	0 ahrii	IIIB 0		_	пдв 0	TIMB 0	n <u>zr</u> B 0	пдв 0	ПДВ 0	n
	1	- 33	1,0E-07	Red Barbard Assessment	0,0003	0,0003		0,066	0,066		0,04	0,035	0,079	0,002	0,124	0,007	0,287		0,002	0,026	0,028		0,063	0,063	0,126	14,26	0,063	0,063	0,063	0,063	0,095	0,063	0,063
, indu	7,0E-07 3,0E-08	1,0E-08 1,0E-07	X	ě	0,007) X		0,104	X	100	0,004	0,051	0,042	0,0002	0,015	0,16	×	C12-C19	0,0004	0,001	×	% SiO2	0,002	0,003	0,004	2,2	0,002	0,002	0,002	0,002	0,004	0,002	0,002
Correction	EIII	пдв	Х	цегид	пдв	X	(йонкто	пдв	×	ин	пдв	пдв	ПДВ	ПДВ	ПДВ	ПДВ	X	эльные С	ПДВ	пдв	×	ая: 70-20	пдв	пдв	пдв	ПДВ	ПДВ	ПДВ	ПДВ	TLUB	EITH	пдв	IIIB
(1903) Lamoniman (2.4 Earnmen)	3.0E-08	1,0E-07	1,0E-07	(1325) Формальдегид	0,0003	0,0003	(2704) Бензин (нефтяной)	990'0	990'0	(2732) Керосин	0,04	0,035	0,079	0,002	0.124	0,007	0,287	54) Углеводороды предельные	0,002	0,026	0,028	2908) Пыль неорганическая: 70-20% SiO2	0,063	0,063	0,126	14,26	0.063	0,063	0,063	0,063	260'0	0,063	0.063
Lancolodus	7.0E-07 3.0E-08	1,0E-08 1,0E-07	X	(1325)	0,007	×	2704) Ber	0,104	×	(273)	0,004	0,051	0,042	0,0002	0,015	0,16	×	ододово	0,0004	0,001	×	ль пеорг	0,002	0,003	0,004	2,2	0,002	0,002	0,002	0,002	0,004	0,002	0,002
(5050)	_	- w I	×		пдв	×	(2)	пдв	×		ПДВ	ПДВ	11JJB	пдв	пдв	пдв	×	(2754) Yru	пдв	ПДВ	×	.908) IIE	пдв	ПДВ	пдв	пдв	ПДВ	пдв	ПДВ	пдв	пдв	пдв	ПЛВ
)E-07 3 0E-08	1,0E-07	1,0E-07		0,0003	0,0003		990'0	0,066		0,04	0,035	0,079	0,002	0,124	0,007	0,287	(2)	0,002	0,026	0,028		0,063	0,063	0,126	14,26	0,063	0,063	0,063	0,063	0,095	0,063	0.063
	7.0E-07	1,012-08	×		0,007	×		0,104	×		0,004	0,051		o.	0,015	0,16	×		0,0004	100,0	×		0,002	0,003	0,004	2,2	0,002	0,002	0,002	0,002	0,004	0,002	0.007
	RITTER		X		з пдв	l .		ПДВ	<u> </u>		ПДВ	-	ļ	-	ПЛВ	ПДВ	×		TIMB	TIMB			ПДВ	TITIB	ПДВ	ПДВ	ПДВ	TITE	-	ПДВ	ПЛВ	ПДВ	IIIB
	6209 12 0E-07 3 0E-08	8 1,0E-07	1.0E-07	,	0,0003			990'0			0,04	ــــــــــــــــــــــــــــــــــــــ	-		ļ		0,287		4 0.002	0.026	-		6,063	0,063	0,126	_	0,063	0,063	-			1	+
	9 7 0E-0	1,0E-08	×		0,007			9 0,104			3 0,004	8 0.051	0 0,042		9 0,015	9 0.16	×		0.0004		-		0,002	0,003	3 0,004	3 2,2	0,002	0,002			-	1-	-
	009		ļ		6209	-	_	6209	 		5бия 620	6208	T	T		6209	-	1	206	6207	┼─	-	y-3 221	1	7-3 622	ебня 6203	y-1 201	y-1 212	1	y-1 214		—	_
	A VOIT	uex 9	Всего по 3В		nex 6	Всего по 3В		9 хэп	Всего по 3В		цех 1 склад цебня 6203	uex 5	uex 5	9 хэп	9 xali	uex 6	Всего по ЗВ		nex 3	uex 4	Всего по 3В		ues 10 BPY-3	res 10 BPY-3	цез 10 БРУ-3 6223	псх 1 скляц шебия	uex 10 BPY-1	uex 10 BPY-1	uex 10 BPY-1	uex 10 BPy-1	llex 10 5PY-1	uex 10 5Py-2	C.VGR 01 ver
	-	2	-		-			_	B		1 100	2	۳	4	ıν	9	╁		-	2	┿		I IIIe		3 116	1	1	+	7 He	_		9800	_

3000	1	г	_					
пдв	ПДВ	пдв	ПДВ	×		пдв	×	×
690,0	0,095	0,611	0,005	15,819		0,054	0,054	21,303
0,003	0,004	960'0	0,0003	×		0,004	X	X
ПДВ	ПДВ	ПДВ	пдв	×		пдв	X	X
0,063	0,095		0,002			0,054	0,054	21,303
0,003	0,004	960'0	0,0003	×	20015-0-14-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	0,004	X	X
ПДВ	ПДВ	яπп	пдв	X	0.00 0.00000000000000000000000000000000	ПДВ	X	X
0,063	0,095	0,611	125.00		000000000000000000000000000000000000000	0,054	0,054	21,303
0,003	0,004	960'0	0,0003	X	белый)	0,004	Х	X
ПДВ	пдв	ПДВ	ПДВ	X	Корунд	пдв	X	X
0,063	0,095	0,611	0,002	15,819	(2930) Пыль абразивная (Корунд белый	0,054	0,054	21,303
0,003	0,004	960'0	0,0003	X	адде чит	0,004	X	×
ПДВ	ПДВ	пдв	ПДВ	A 100 A 100	2930) ∏ı	ПДВ	Х	×
0,063	0,095	0,611	0,002	15,819)	0,054	0,054	21,303
0,003	0,004	960'0	0,0003	X		0,004	X	
ПДВ	пдв	ПДВ	TITE	X	TANGEST STATE OF THE STATE OF T	пдв	Х	×
0,003 0,063	0,095	0,611	0,002	X 15,819		0,054	0,054	21,303
0,003	0,004	960'0	6209 0,0003 0,002	×	4 10 NO.	0,004	Х	X
218	6219	204	6209	×	200 ERDORD	6209	X	×
3 uex 10 BPY-2 218	цех 10 БРУ-2 6219	цех 2 тепль:3 сыпад шебия	9 хэп	Beero no 3B		rtex 6 6209 0,004 0,054	Всего по 3В	итого:
<u></u>	14	15	16			Ţ		

В строке "WTOPO" указываются заловые выбросы (г/г) в целом по отщельной производственной территории

Нормативы выбросов вредных (загрязняющих) веществ в атмосферный воздух по юридическому лицу в целом

ООО "Урал-ремстройсераис"

нямуещование юридического вида или факлалии, плество индивидуального предпринимателя:
ООО "Урал-ремстройсервис" проиллощадка №2 Термский край, Усольский р-он, Романовское сельское поселение
изменование отлевной продаводственной территория, фектический вдие соуществления деятельности

6

툿	Наименование врадного	Класс							Нормат	Норматив выбросов (с разбивкой по годам)	а) яозо	разбивк	ой по го	дам)						
		вредкого (загрязия-		2017 r.			2018 r.		, 4	2019 г.		2	2020 r.		2	2021 r.			2022 r.	
		(outen)	1/c	T/L	TL/IB/	1/4	1/1	11/13/	2/1	1/L	TIMB/	ric	T/r	пдв/	1/c	T/F	пдв/	1,/c	.I/L	nab/
		вещества (I - ГV)			BCB			BCB			BCB			BCB			BCB			BCB
-	3	m	4	S	9	7	89	5.	10	П	12	13	14	15	16	13	18	-61	70	21
-	(0123) Железа оксуд (в пересч. на Ре)	3	0.068	0.813	TIE	0.068	0,813	TITE	890.0	0.813	плв	0,068	0.813	TIJB (890'0	0.813	ПЛВ	0.068	0.813	ПДВ
,	(0143) Mangaren u eno coeruna	2	0.001	0.005	TIB	0.001	500.0	TIMB	0.001	0.005	плв	0,001	0.005	TIJB (0.005	ПДВ	0.001	0,005	ТДВ
-	(0301) Asora neokun	3	0.758	0.888	TITE	0.758	0.888	TIJIB	0.758	0.888	плв	0,758	0.888	TIJB (_	0.888	ПДВ	0.758	0,888	ПДВ
7	(03/04) Anora naceal	3	0.122	0.145	TITE	0.122	0,145	TUIB	0.122	0.145	ПДВ	0,122 0	0,145	TJ.B	0,122	0,145	ПДВ	0,122	0,145	ПДВ
	(0328) Casea	3	0.076	0.004	TLIB	0.076	0,094	TUTB	0.076	0.094	ПЛВ	0,076	-			0.094	ПДВ	0.076	0.094	TILB
2	(0330) Cens. mossown	3	0.253	0.074	TLIB	0.253	0,074			0,074	ПДВ	0,253 (0.074	\dashv	0.253	0.074	11118	0.253	0.074	IIIB
-	(0333) Centrollonoll	2	3E-06	1E-04	TIMB	3E-06	1E-04	ПЛВ	3E-06	1E-04	пдв	3E-06			3E 06	1E-04	IIIB	3E-06	E-04	ПДВ
- 00	(0337) Vruenoua okcus	4	2.101	3,021	плв	2,101	3,021	TITE	2.101	3,021	пдв	2,101	3.02.1	ПЛВ	2,101	3.021	11.UB	2,101	3.021	ПДВ
0	(0342) Onward reported	2	0.00	0.007	TITE	0,001	0,007	-	0.001	0,007	пдв	0.001	0.007	пдв	0.001	0.007	ПДВ	0.001	0.007	ПДВ
1	1	2	3E-04	0,002	TITE		0,002		-	0.002	ПЛВ	3E-04 (0.007	плв	3E-04	0.002	ПШВ	3E-04	0.002	пдв
=	1		7F.417	1E-07	ППВ	7E-07	1E-07	TITIB	7E-07	16-07	UIB .	7E-07	1E-07	плв	7E-07	1E-07	ПДВ	7E-07	IE-07	пдв
2	- 10	,	0.007	3E-04	ПЛВ	0.007	3E-04	-		3E-04	ПЛВ	0,007	3E-04	OJUB I	0.007	3E-04	ПДВ	0.007	3E-04	ПДВ
2 5		4	0.104	9900	плв	0,104	9900	TUIB	0.104	0.066	ПДВ	0,104	990.0			0.066	пдв	0,104	0,066	ПДВ
4	(2732) Kenocur	0	0.272	0.287	ПДВ	0,272	0,287	пДВ		0.287	UJB	0,272	_	\dashv		0.287	TIAB	0.272	0.287	ETIB LIB
4	(2754) Углевовороды предельные С12-С19	P	0.001	0.028	EII/IIB	0,001	0,028	пдв	0.001	0.028	UJIB	0.001	0,028	-	-	0,028	IIB	0.00	0.028	TIB
1	17908) Hank Heonrald Received 70-20% SIO2	۳	2 33	15.819	TITIB	2.33	15.819	TUR	2,33	15.819	UIB	2.33	15,819	II.IB	2,33	15,819		2.33	15.819	ПДВ
2 1	(2940) Flame nijaman (Konsus Gentair)	0	0.004	0.054	TITIB	0.004	0.054	RIUB	0.004	0.054	ELJIB	0,004	0.054	ПЛВ	0.004	0.054	ПЛВ	0.004	0.054	ПДВ
		MTOPO	×	21,303	идв	×	21,303	ПЛВ	×	21,303	пдв	X Z	21,303	ПДВ	×	21,303	ПДВ		21,303	ПДВ
	В том чис.	В том числе твердык:	×	16,787	ПДПВ	×	16,787	ПДВ	Х	16,787	ПДВ	×	16,787	ПДВ	×	16,787	ПЛЯ	7	16,787	ПДВ
	Жидких и газообразных:	ообразных:	×	4,516	пдв	×	4,516	пдв	×	4,516	пдв	×	4,516	ПДВ	×	4,516	ПДВ	×	4,516	TJTB

Приложение Ц (обязательное)

Расчет количества выбросов загрязняющих веществ

Ц.1 Расчеты количества выбросов загрязняющих веществ на период строительства

Валовые и максимальные выбросы предприятия №81557, Усольский калийный комбинат. К, Пермь, 2022 г.

Расчет произведен программой «АТП-Эколог», версия 3.20.21 от 27.01.2021 © 1995-2021 ФИРМА «ИНТЕГРАЛЬ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для
- авторемонтных предприятий (расчетным методом). М., 1998 г. 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
- оно оброжном техники (рисчетным метовом), м., 1998 г.
 4. Дополнения (приложения №№ 1-3) к бышеперечисленным методикам.
 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Программа зарегистрирована на: ООО "ЕвроХим-Проект" Регистрационный номер: 01-01-6722

Пермь, 2022 г.: среднемесячная и средняя минимальная температура 603духа, ${}^{\circ}\!C$

Характеристики	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-14.9	-13	-5	2.6	9.7	15.4	17.9	14.7	8.9	1.4	-6.3	-12
Расчетные периоды года	X	X	П	П	Т	Т	T	Т	Т	П	X	X
Средняя минимальная температура, °С	10	10	10	10	10	10	10	10	10	10	10	10
Расчетные периоды года	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней
Теплый	Май; Июнь; Июль; Август; Сентябрь;	135
Переходный	Март; Апрель; Октябрь;	81
Холодный	Январь; Февраль; Ноябрь; Декабрь;	109
Всего за год	Январь-Декабрь	325

Участок №8001; Дорожно-строительная техника, тип - 8 - Дорожная техника на неотапливаемой стоянке, цех №4, площадка №1, вариант №1

Общее описание участка Подтип - Нагрузочный режим (полный) Пробег дорожных машин до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.010

- от наиболее удаленного от выезда места стоянки: 0.200

Пробег дорожных машин от въезда на стоянку (км) пижайшего к въезду места стоянки: 0.010

- до ближайшего к въезду места стоянки: 0.010 - до наиболее удаленного от въезда места стоянки: 0.200

Выбросы участка

Код	Название	Макс. выброс (г/с)	Валовый выброс (т/год)
6-6a	вещества	+	
	Оксиды азота (NOx)*	0.1686522	25.329120
	В том числе:		
0301	*Азота диоксид (Двуокись азота; пероксид азота)	0.1349218	20.263296
0304	*Азот (II) оксид (Азот монооксид)	0.0219248	3.292786
0328	Углерод (Пигмент черный)	0.0188650	3.558778
0330	Сера диоксид	0.0139278	2.283188
0337	Углерода оксид (Углерод окись; утлерод моноокись; утарный газ)	0.2767034	19.900194
0401	Углеводороды**	0.0321839	5.383893
	В том числе:		
2704	**Бензин (нефтяной, малосернистый) (в пересчете на углерод)	0.0208889	0.086860
2732	**Керосин (Керосин прямой перегонки; керосин дезодорированный)	0.0280172	5.297032

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

NO₂ - 0.80

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	7.224034
Переходный	Вся техника	4.868463
Холодный	Вся техника	7.807697
Всего за год		19.900194

Максимальный выброс составляет: 0.2767034 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Mò 6	Мдв.те	Vò6	Mxx	Схр	Выброс (г/с)
ue						n.				
Экскаватор обратная лопата ЕК-	25.000	4.0	4.800	20.0	1.570	1.290	10	2.400	нет	
Johana EK-	25.000	4.0	2.400	2.0	1.290	1.290	10	2.400	нет	0.1200141
Экскаватор обратная лопата Нуи	35.000	4.0	7.800	20.0	2.550	2.090	5	3.910	нет	0.1200141
	35.000	4.0	3.900	2.0	2.090	2.090	5	3.910	нет	0.1714927
Бульдозер Б-170	35.000	4.0	7.800	20.0	2.550	2.090	5	3.910	нет	
	35.000	4.0	3.900	2.0	2.090	2.090	5	3.910	нет	0.2572390
Погрузчик фронтальны й ПК 33-01	25.000	4.0	4.800	20.0	1.570	1.290	10	2.400	нет	
	25.000	4.0	2.400	2.0	1.290	1.290	10	2.400	нет	0.0600071
Бетононасо c Mecbo P 6.90	35.000	4.0	7.800	20.0	2.550	2.090	10	3.910	нет	
	35.000	4.0	3.900	2.0	2.090	2.090	10	3.910	нет	0.2550445
Кран гусеничный монтажный Lieb	90.000	4.0	18.800	20.0	6.470	5.300	5	9.920	нет	
	90.000	4.0	9.900	2.0	5.300	5.300	5	9.920	нет	0.2202211
Кран самоходный автомобиль ный	90.000	4.0	18.800	20.0	6.470	5.300	10	9.920	нет	
	90.000	4.0	9.900	2.0	5.300	5.300	10	9.920	нет	0.2183661
Кран автобильны й КС-65711	57.000	4.0	12.600	20.0	4.110	3.370	10	6.310	нет	
	57.000	4.0	6.300	2.0	3.370	3.370	10	6.310	нет	0.1383517
Кран автомобиль ный КС-55713	57.000	4.0	12.600	20.0	4.110	3.370	10	6.310	нет	
	57.000	4.0	6.300	2.0	3.370	3.370	10	6.310	нет	0.1383517
Кранс автомобиль ынй КС-45734	57.000	4.0	12.600	20.0	4.110	3.370	10	6.310	нет	
	57.000	4.0	6.300	2.0	3.370		10	6.310	нет	0.2767034
Автогидроп одъемник Palfinger P	57.000	4.0	12.600	20.0	4.110	3.370	10	6.310	нет	
	57.000	4.0	6.300	2.0	3.370		10	6.310	нет	0.1383517
Автогидроп одъемник	57.000	4.0	12.600	20.0	4.110	3.370	10	6.310	нет	

ПСС-141.36										
	57.000	4.0	6.300	2.0	3.370	3.370	10	6.310	нет	0.1383517
Автогидроп одъемник	57.000	4.0	12.600	20.0	4.110	3.370	10	6.310	нет	
ПСС-121.22										
	57.000	4.0	6.300	2.0	3.370	3.370	10	6.310	нет	0.1383517

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	2.015034
Переходный	Вся техника	1.322104
Холодный	Вся техника	2.046756
Всего за год		5.383893

Максимальный выброс составляет: 0.0321839 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Тпр	Mò 6	Мдв.те	Vd6	Mxx	Схр	Выброс (г/с)
ие						n.				
Экскаватор обратная лопата ЕК-	2.100	4.0	0.780	20.0	0.510	0.430	10	0.300	нет	
	2.100	4.0	0.300	2.0	0.430	0.430	10	0.300	нет	0.0154744
Экскаватор обратная лопата Нуи	2.900	4.0	1.270	20.0	0.850	0.710	.5	0.490	нет	
	2.900	4.0	0.490	2.0	0.710	0.710	.5	0.490	нет	0.0255211
Бульдозер Б-170	2.900	4.0	1.270	20.0	0.850	0.710	5	0.490	нет	
	2.900	4.0	0.490	2.0	0.710	0.710	5	0.490	нет	0.0255211
Погрузчик фронтальны й ПК 33-01	2.100	4.0	0.780	20.0	0.510	0.430	10	0.300	нет	
	2.100	4.0	0.300	2.0	0.430	0.430	10	0.300	нет	0.0077372
Бетононасо c Mecbo P 6.90	2.900	4.0	1.270	20.0	0.850	0.710	10	0.490	нет	
	2.900	4.0	0.490	2.0	0.710	0.710	10	0.490	нет	0.0255211
Кран гусеничный монтажный Lieb	7.500	4.0	3.220	20.0	2.150	1.790	5	1.240	нет	
	7.500	4.0	1.240	2.0	1.790	1.790	5	1.240	нет	0.0321839
Кран самоходный автомобиль ный	7.500	4.0	3.220	20.0	2.150	1.790	10	1.240	нет	
	7.500	4.0	1.240	2.0	1.790	1.790	10	1.240	нет	0.0321839
Кран	4.700	4.0	2.050	20.0	1.370	1.140	10	0.790	нет	

автобильны										
й КС-65711				,						
	4.700	4.0	0.790	2.0	1.140	1.140	10	0.790	нет	0.0204978
Кран	4.700	4.0	2.050	20.0	1.370	1.140	10	0.790	нет	
автомобиль										
ный										
KC-55713										
	4.700	4.0	0.790	2.0	1.140	1.140	10	0.790	нет	0.0204978
Кранс	4.700	4.0	2.050	20.0	1.370	1.140	10	0.790	нет	
автомобиль										
ынй										
KC-45734										
	4.700	4.0	0.790	2.0	1.140	1.140	10	0.790	нет	0.0243202
Автогидроп	4.700	4.0	2.050	20.0	1.370	1.140	10	0.790	нет	
одъемник					11,000,000,000					
Palfinger P										
	4.700	4.0	0.790	2.0	1.140	1.140	10	0.790	нет	0.0204978
Автогидроп	4.700	4.0	2.050	20.0	1.370	1.140	10	0.790	нет	
одъемник										
ПСС-141.36		2					70			
	4.700	4.0	0.790	2.0	1.140	1.140	10	0.790	нет	0.0204978
Автогидроп	4.700	4.0	2.050	20.0	1.370	1.140	10	0.790	нет	
одъемник										
ПСС-121.22										
	4.700	4.0	0.790	2.0	1.140	1.140	10	0.790	нет	0.0204978

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	10.450127
Переходный	Вся техника	6.316734
Холодный	Вся техника	8.562259
Всего за год		25.329120

Максимальный выброс составляет: 0.1686522 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Mò 6	Мдв.те	Vò6	Mxx	Схр	Выброс (г/с)
ие						n.			0000	19030 0193 194
Экскаватор	1.700	4.0	0.720	20.0	2.470	2.470	10	0.480	нет	
обратная										
лопата ЕК-							73			
	1.700	4.0	0.480	2.0	2.470	2.470	10	0.480	нет	0.0819811
Экскаватор	3.400	4.0	1.170	20.0	4.010	4.010	5	0.780	нет	
обратная										
лопата Нуи										
	3.400	4.0	0.780	2.0	4.010	4.010	- 5	0.780	нет	0.1330989
Бульдозер	3.400	4.0	1.170	20.0	4.010	4.010	5	0.780	нет	
Б-170										
	3.400	4.0	0.780	2.0	4.010	4.010	5	0.780	нет	0.1330989

Погрузчик	1.700	4.0	0.720	20.0	2.470	2.470	10	0.480	нет	
фронтальны й ПК 33-01										
	1.700	4.0	0.480	2.0	2.470	2.470	10	0.480	нет	0.0409906
Бетононасо c Mecbo P 6.90	3.400	4.0	1.170	20.0	4.010	4.010	10	0.780	нет	
	3.400	4.0	0.780	2.0	4.010	4.010	10	0.780	нет	0.1330989
Кран гусеничный монтажный Lieb	7.000	4.0	3.000	20.0	10.160	10.160	5	1.990	нет	
	7.000	4.0	2.000	2.0	10.160	10.160	5	1.990	нет	0.1686522
Кран самоходный автомобиль ный	7.000	4.0	3.000	20.0	10.160	10.160	10	1.990	нет	
	7.000	4.0	2.000	2.0	10.160	10.160	10	1.990	нет	0.1686522
Кран автобильны й КС-65711	4.500	4.0	1.910	20.0	6.470	6.470	10	1.270	нет	
	4.500	4.0	1.270	2.0	6.470	6.470	10	1.270	нет	0.1074072
Кран автомобиль ный КС-55713	4.500	4.0	1.910	20.0	6.470	6.470	10	1.270	нет	
	4.500	4.0	1.270	2.0	6.470	6.470	10	1.270	нет	0.1074072
Кранс автомобиль ынй КС-45734	4.500	4.0	1.910	20.0	6.470	6.470	10	1.270	нет	
	4.500	4.0	1.270	2.0	6.470	6.470	10	1.270	нет	0.1074072
Автогидроп одъемник Palfinger P	4.500	4.0	1.910	20.0	6.470	6.470	10	1.270	нет	
	4.500	4.0	1.270	2.0	6.470	6.470	10	1.270	нет	0.1074072
Автогидроп одъемник ПСС-141.36	4.500	4.0	1.910	20.0	6.470	6.470	10	1.270	нет	
	4.500	4.0	1.270	2.0	6.470	6.470	10	1.270	нет	0.1074072
Автогидроп одъемник ПСС-121.22	4.500	4.0	1.910	20.0	6.470	6.470	10	1.270	нет	
	4.500	4.0	1.270	2.0	6.470	6.470	10	1.270	нет	0.1074072

Выбрасываемое вещество - 0328 - Углерод (Пигмент черный) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	1.169249
Переходный	Вся техника	0.946353
Холодный	Вся техника	1.443177
Всего за год		3.558778

Максимальный выброс составляет: 0.0188650 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Mò 6	Мдв.те	Vds	Mxx	Схр	Выброс (г/с)
пе	0.000	4.0	0.360	20.0	0.410	n. 0.270	10	0.060	нет	
Экскаватор обратная лопата ЕК-	0.000	4.0	0.300	20.0	0.410	0.270	10	0.000	нет	
	0.000	4.0	0.060	2.0	0.270	0.270	10	0.060	нет	0.0090033
Экскаватор обратная лопата Нуи	0.000	4.0	0.600	20.0	0.670	0.450	5	0.100	нет	
	0.000	4.0	0.100	2.0	0.450	0.450	5	0.100	нет	0.0150056
Бульдозер Б-170	0.000	4.0	0.600	20.0	0.670	0.450	5	0.100	нет	
	0.000	4.0	0.100	2.0	0.450	0.450	5	0.100	нет	0.0150056
Погрузчик фронтальны й ПК 33-01	0.000	4.0	0.360	20.0	0.410	0.270	10	0.060	нет	
	0.000	4.0	0.060	2.0	0.270	0.270	10	0.060	нет	0.0045017
Бетононасо с Mecbo Р 6.90	0.000	4.0	0.600	20.0	0.670	0.450	10	0.100	нет	
	0.000	4.0	0.100	2.0	0.450	0.450	10	0.100	нет	0.0150056
Кран гусеничный монтажный Lieb	0.000	4.0	1.560	20.0	1.700	1.130	5	0.260	нет	
	0.000	4.0	0.260	2.0	1.130	1.130	5	0.260	нет	0.0188650
Кран самоходный автомобиль ный	0.000	4.0	1.560	20.0	1.700	1.130	10	0.260	нет	
	0.000	4.0	0.260	2.0	1.130	1.130	10	0.260	нет	0.0188650
Кран автобильны й КС-65711	0.000	4.0	1.020	20.0	1.080	0.720	10	0.170	нет	
	0.000	4.0	0.170	2.0	0.720	0.720	10	0.170	нет	0.0120322
Кран автомобиль ный КС-55713	0.000	4.0	1.020	20.0	1.080	0.720	10	0.170	нет	
	0.000	4.0	0.170	2.0	0.720	0.720	10	0.170	нет	0.0120322
Кранс автомобиль ынй КС-45734	0.000	4.0	1.020	20.0	1.080	0.720	10	0.170	нет	
	0.000	4.0	0.170	2.0	0.720	0.720	10	0.170	нет	0.0120322
Автогидроп одъемник Palfinger P	0.000	4.0	1.020	20.0	1.080		10	0.170	нет	
	0.000	4.0	0.170	2.0	0.720		10	0.170	нет	0.0120322
Автогидроп	0.000	4.0	1.020	20.0	1.080	0.720	10	0.170	нет	

одъемник ПСС-141.36										
	0.000	4.0	0.170	2.0	0.720	0.720	10	0.170	нет	0.0120322
Автогидроп	0.000	4.0	1.020	20.0	1.080	0.720	10	0.170	нет	
одъемник										
ПСС-121.22				c 5		N 9				
	0.000	4.0	0.170	2.0	0.720	0.720	10	0.170	нет	0.0120322

Выбрасываемое вещество - 0330 - Сера диоксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.859975
Переходный	Вся техника	0.568819
Холодный	Вся техника	0.854394
Всего за год		2.283188

Максимальный выброс составляет: 0.0139278 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	Mnp	Tnp	Md 6	Мд6.те	Vd6	Mxx	Схр	Выброс (г/с)
ие						n.				
Экскаватор	0.042	4.0	0.120	20.0	0.230	0.190	10	0.097	нет	
обратная										
лопата ЕК-										
	0.042	4.0	0.097	2.0	0.190	0.190	10	0.097	нет	0.0066400
Экскаватор	0.058	4.0	0.200	20.0	0.380	0.310	5	0.160	нет	
обратная										
лопата Нуи										
	0.058	4.0	0.160	2.0	0.310		5	0.160	нет	0.0108433
Бульдозер Б-170	0.058	4.0	0.200	20.0	0.380	0.310	5	0.160	нет	
	0.058	4.0	0.160	2.0	0.310	0.310	5	0.160	нет	0.0108433
Погрузчик	0.042	4.0	0.120	20.0	0.230	0.190	10	0.097	нет	
фронтальны й ПК 33-01										
	0.042	4.0	0.097	2.0	0.190	0.190	10	0.097	нет	0.0033200
Бетононасо	0.058	4.0	0.200	20.0	0.380	0.310	10	0.160	нет	
c Mecbo P										
6.90										
	0.058	4.0	0.160	2.0	0.310	0.310	10	0.160	нет	0.0108433
Кран	0.150	4.0	0.320	20.0	0.980	0.800	5	0.390	нет	
гусеничный										
монтажный										
Lieb										
	0.150	4.0	0.260	2.0	0.800	0.800	5	0.390	нет	0.0139278
Кран	0.150	4.0	0.320	20.0	0.980	0.800	10	0.390	нет	
самоходный										
автомобиль										
ный	1200202120	270		1202					100000000000000000000000000000000000000	
	0.150	4.0	0.260	2.0	0.800	0.800	10	0.390	нет	0.0139278

T/	0.005	4.0	0.210	20.0	0.630	0.510	10	0.250		
Кран	0.095	4.0	0.310	20.0	0.630	0.510	10	0.250	нет	
автобильны										
й КС-65711	0.00.5		0.550	• •	0.510	0.510		0.250		0.0000000
	0.095	4.0	0.250	2.0	0.510	0.510	10	0.250	нет	0.0088828
Кран	0.095	4.0	0.310	20.0	0.630	0.510	10	0.250	нет	
автомобиль										
ный										
KC-55713										
9	0.095	4.0	0.250	2.0	0.510	0.510	10	0.250	нет	0.0088828
Кранс	0.095	4.0	0.310	20.0	0.630	0.510	10	0.250	нет	
автомобиль										
ынй										
KC-45734										
	0.095	4.0	0.250	2.0	0.510	0.510	10	0.250	нет	0.0088828
Автогидроп	0.095	4.0	0.310	20.0	0.630	0.510	10	0.250	нет	
одъемник										
Palfinger P										
	0.095	4.0	0.250	2.0	0.510	0.510	10	0.250	нет	0.0088828
Автогидроп	0.095	4.0	0.310	20.0	0.630	0.510	10	0.250	нет	
одъемник										
ПСС-141.36										
	0.095	4.0	0.250	2.0	0.510	0.510	10	0.250	нет	0.0088828
Автогидроп	0.095	4.0	0.310	20.0	0.630	0.510	10	0.250	нет	
одъемник	2000 1730000 755	10123275	54400000077700	Metale SE			0000000	200200000000000000000000000000000000000	120000	
ПСС-121.22										
	0.095	4.0	0.250	2.0	0.510	0.510	10	0.250	нет	0.0088828

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Двуокись азота; пероксид азота) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	8.360101
Переходный	Вся техника	5.053387
Холодный	Вся техника	6.849807
Всего за год		20.263296

Максимальный выброс составляет: 0.1349218 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азот монооксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	1.358516
Переходный	Вся техника	0.821175
Холодный	Вся техника	1.113094
Всего за год		3.292786

Максимальный выброс составляет: 0.0219248 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2704 - Бензин (нефтяной, малосернистый) (в пересчете на углерод) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.015997
Переходный	Вся техника	0.019197
Холодный	Вся техника	0.051666
Всего за год		0.086860

Максимальный выброс составляет: 0.0208889 г/с. Месяц достижения: Январь.

Наименован	Mn	Tn	%%	Mnp	Tnp	Mò 6	Mò6.m	Vò6	Mxx	%%	Схр	Выброс (г/с)
ие			пуск.		1		en.			двиг.		30000 10000 307
Экскаватор	2.100	4.0	100.0	0.780	20.0	0.510	0.430	10	0.300	0.0	нет	
обратная												
лопата ЕК-												
	2.100	4.0	100.0	0.300	2.0	0.430	0.430	10	0.300	0.0	нет	0.0093333
Экскаватор	2.900	4.0	100.0	1.270	20.0	0.850	0.710	5	0.490	0.0	нет	
обратная												
лопата Нуи												
_	2.900	4.0	100.0	0.490	2.0	0.710	0.710	5	0.490	0.0	нет	0.0128889
Бульдозер Б-170	2.900	4.0	100.0	1.270	20.0	0.850	0.710	5	0.490	0.0	нет	
	2.900	4.0	100.0	0.490	2.0	0.710	0.710	5	0.490	0.0	нет	0.0193333
Погрузчик фронтальны й ПК 33-01	2.100	4.0	100.0	0.780	20.0	0.510	0.430	10	0.300	0.0	нет	
	2.100	4.0	100.0	0.300	2.0	0.430	0.430	10	0.300	0.0	нет	0.0046667
Бетононасо c Mecbo Р 6.90	2.900	4.0	100.0	1.270	20.0	0.850	0.710	10	0.490	0.0	нет	
	2.900	4.0	100.0	0.490	2.0	0.710	0.710	10	0.490	0.0	нет	0.0193333
Кран гусеничный монтажный Lieb	7.500	4.0	100.0	3.220	20.0	2.150	1.790	5	1.240	0.0	нет	
	7.500	4.0	100.0	1.240	2.0	1.790	1.790	5	1.240	0.0	нет	0.0166667
Кран самоходный автомобиль ный	7.500	4.0	100.0	3.220	20.0	2.150	1.790	10	1.240	0.0	нет	
	7.500	4.0	10.10.00	1.240	2.0	1.790	1.790	10	1.240	0.0	нет	0.0166667
Кран автобильны й КС-65711	4.700	4.0	100.0	2.050	20.0	1.370	1.140	10	0.790	0.0	нет	
	4.700	4.0	100.0	0.790	2.0	1.140	1.140	10	0.790	0.0	нет	0.0104444
Кран	4.700	4.0	100.0	2.050	20.0	1.370	1.140	10	0.790	0.0	нет	

Ct. (1.00m)												
автомобиль												
ный												
KC-55713												
	4.700	4.0	100.0	0.790	2.0	1.140	1.140	10	0.790	0.0	нет	0.0104444
Кранс	4.700	4.0	100.0	2.050	20.0	1.370	1.140	10	0.790	0.0	нет	
автомобиль												
ынй												
KC-45734												
	4.700	4.0	100.0	0.790	2.0	1.140	1.140	10	0.790	0.0	нет	0.0208889
Автогидроп	4.700	4.0	100.0	2.050	20.0	1.370	1.140	10	0.790	0.0	нет	
одъемник												
Palfinger P												
	4.700	4.0	100.0	0.790	2.0	1.140	1.140	10	0.790	0.0	нет	0.0104444
Автогидроп	4.700	4.0	100.0	2.050	20.0	1.370	1.140	10	0.790	0.0	нет	
одъемник	000000000000000000000000000000000000000		V.V. 324000-		00.00-00.00	WW-810 FISC			0-0100000000000000000000000000000000000	W 64000000000	4600000	
ПСС-141.36												
	4.700	4.0	100.0	0.790	2.0	1.140	1.140	10	0.790	0.0	нет	0.0104444
Автогидроп	4.700	4.0	100.0	2.050	20.0	1.370	1.140	10	0.790	0.0	нет	
одъемник												
ПСС-121.22												
	4.700	4.0	100.0	0.790	2.0	1.140	1.140	10	0.790	0.0	нет	0.0104444

Выбрасываемое вещество - 2732 - Керосин (Керосин прямой перегонки; керосин дезодорированный) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	1.999036
Переходный	Вся техника	1.302907
Холодный	Вся техника	1.995090
Всего за год		5.297032

Максимальный выброс составляет: 0.0280172 г/с. Месяц достижения: Май.

Наименован	Mn	Tn	%%	Mnp	Tnp	Md 6	Mò6.m	Vò6	Mxx	%%	Схр	Выброс (г/с)
ие			пуск.				en.			двиг.		
Экскаватор обратная лопата ЕК-	2.100	1.0	0.0	0.300	2.0	0.430	0.430	10	0.300	100.0	нет	
	2.100	1.0	0.0	0.300	2.0	0.430	0.430	10	0.300	100.0	нет	0.0131411
Экскаватор обратная лопата Нуи	2.900	1.0	0.0	0.490	2.0	0.710	0.710	5	0.490	100.0	нет	
	2.900	1.0	0.0	0.490	2.0	0.710	0.710	5	0.490	100.0	нет	0.0222989
Бульдозер Б-170	2.900	1.0	0.0	0.490	2.0	0.710	0.710	5	0.490	100.0	нет	
	2.900	1.0	0.0	0.490	2.0	0.710	0.710	5	0.490	100.0	нет	0.0206878
Погрузчик фронтальны й ПК 33-01	2.100	1.0	0.0	0.300	2.0	0.430	0.430	10	0.300	100.0	нет	

	2.100	1.0	0.0	0.300	2.0	0.430	0.430	10	0.300	100.0	нет	0.0065706
Бетононасо	2.900	1.0	0.0	0.490	2.0	0.710	0.710	10	0.490	100.0	нет	
c Mecbo P												
6.90												
	2.900	1.0	0.0	0.490	2.0	0.710	0.710	10	0.490	100.0	нет	0.0206878
Кран	7.500	1.0	0.0	1.240	2.0	1.790	1.790	5	1.240	100.0	нет	
гусеничный												
монтажный												
Lieb					e g						e 7	
	7.500	1.0	0.0	1.240	2.0	1.790	1.790	5	1.240	100.0	нет	0.0280172
Кран	7.500	1.0	0.0	1.240	2.0	1.790	1.790	10	1.240	100.0	нет	
самоходный												
автомобиль												
ный												
	7.500	1.0	0.0	1.240	2.0	1.790	1.790	10	1.240	100.0	нет	0.0280172
Кран	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	
автобильны												
й КС-65711												
	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	0.0178867
Кран	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	
автомобиль												
ный												
KC-55713												
	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	0.0178867
Кранс	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	
автомобиль												
ынй												
KC-45734												
	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10		100.0	нет	0.0152756
Автогидроп	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	
одъемник												
Palfinger P												
	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	0.0178867
Автогидроп	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	
одъемник												
ПСС-141.36		100,000,000	17304 Nation		45000000000	100 - 100 010 100 100 100 100 100 100 10		0.000	1000			Arrestant beach designed with a court
1 27	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	0.0178867
Автогидроп	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	
одъемник												
ПСС-121.22			21.55						0 200			
	4.700	1.0	0.0	0.790	2.0	1.140	1.140	10	0.790	100.0	нет	0.0178867

Участок №8002; Автотранспорт, тип - 7 - Внутренний проезд, цех №4, площадка №1, вариант №1

Общее описание участка

Протяженность внутреннего проезда (км): 0.200 - среднее время выезда (мин.): 30.0

Выбросы участка

Код 6-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (m/год)
	Оксиды азота (NOx)*	0.0019444	0.003120
	В том числе:		
0301	*Азота диоксид (Двуокись азота; пероксид азота)	0.0015556	0.002496
0304	*Азот (II) оксид (Азот монооксид)	0.0002528	0.000406
0328	Углерод (Пигмент черный)	0.0002111	0.000300
0330	Сера диоксид	0.0003978	0.000568
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0.0039222	0.005628
0401	Углеводороды**	0.0005667	0.000828
	В том числе:		
2732	**Керосин (Керосин прямой перегонки; керосин дезодорированный)	0.0005667	0.000828

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)	
Теплый	Вся техника	0.002114	
Переходный	Вся техника	0.001408	
Холодный	Вся техника	0.002106	
Всего за год		0.005628	

Максимальный выброс составляет: 0.0039222 г/с. Месяц достижения: Январь.

Наименован ие	Ml	Кнтф	Схр	Выброс (г/с)
MA3 6430A9 (д)	9.300	1.0	нет	0.0010333
MA3 55102-223	7.400	1.0	да	0.0008222

^{2.} Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

(д)				
MA3-6501	9.300	1.0	да	0.0031000
(д)			2 57	

Выбрасываемое вещество - 0401 - Углеводороды Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000319
Переходный	Вся техника	0.000204
Холодный	Вся техника	0.000305
Всего за год		0.000828

Максимальный выброс составляет: 0.0005667 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
МАЗ 6430А9 (д)	1.300	1.0	нет	0.0001444
МАЗ 55102-223 (д)	1.200	1.0	да	0.0001333
MA3-6501 (д)	1.300	1.0	да	0.0004333

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.001296
Переходный	Вся техника	0.000778
Холодный	Вся техника	0.001046
Всего за год		0.003120

Максимальный выброс составляет: 0.0019444 г/с. Месяц достижения: Январь.

Наименован	MI	Кнтр	Схр	Выброс (г/с)
ие				
MA3 6430A9 (д)	4.500	1.0	нет	0.0005000
MA3 55102-223 (д)	4.000	1.0	да	0.0004444
MA3-6501 (д)	4.500	1.0	да	0.0015000

Выбрасываемое вещество - 0328 - Углерод (Пигмент черный) Валовые выбросы

Период	Марка автомобиля	Валовый выброс
года	или дорожной техники	(тонн/период)

		(тонн/год)
Теплый	Вся техника	0.000111
Переходный	Вся техника	0.000076
Холодный	Вся техника	0.000113
Всего за год		0.000300

Максимальный выброс составляет: 0.0002111 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
MA3	0.500	1.0	нет	0.0000556
6430А9 (д)				
MA3	0.400	1.0	да	0.0000444
55102-223				
(д)				
MA3-6501	0.500	1.0	да	0.0001667
(д)				

Выбрасываемое вещество - 0330 - Сера диоксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000212
Переходный	Вся техника	0.000142
Холодный	Вся техника	0.000213
Всего за год		0.000568

Максимальный выброс составляет: 0.0003978 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	Схр	Выброс (г/с)
ие				
MA3	0.970	1.0	нет	0.0001078
6430А9 (д)				
MA3	0.670	1.0	да	0.0000744
55102-223				
(д)				
MA3-6501	0.970	1.0	да	0.0003233
(д)				

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Двуокись азота; пероксид азота) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.001037
Переходный	Вся техника	0.000622
Холодный	Вся техника	0.000837
Всего за год		0.002496

Максимальный выброс составляет: 0.0015556 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азот монооксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000168
Переходный	Вся техника	0.000101
Холодный	Вся техника	0.000136
Всего за год		0.000406

Максимальный выброс составляет: 0.0002528 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин (Керосин прямой перегонки; керосин дезодорированный) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000319
Переходный	Вся техника	0.000204
Холодный	Вся техника	0.000305
Всего за год		0.000828

Максимальный выброс составляет: 0.0005667 г/с. Месяц достижения: Январь.

Наименован	Ml	Кнтр	%%	Схр	Выброс (г/с)
ие					
MA3	1.300	1.0	100.0	нет	0.0001444
6430А9 (д)					
MA3	1.200	1.0	100.0	да	0.0001333
55102-223	A. A		***************************************		
(д)					
MA3-6501	1.300	1.0	100.0	да	0.0004333
(д)		-			

Участок №8003; Автотранспорт, тип - 7 - Внутренний проезд, цех №4, площадка №1, вариант №1

Общее описание участка

Протяженность внутреннего проезда (км): 0.200 - среднее время выезда (ммн.): 30.0

Выбросы участка

Код 6-6а	Название вещества	Макс. выброс (г/с)	Валовый выброс (т/год)
	Оксиды азота (NOx)*	0.0011667	0.001365
	В том числе:		
0301	*Азота диоксид (Двуокись азота; пероксид азота)	0.0009333	0.001092
0304	*Азот (II) оксид (Азот монооксид)	0.0001517	0.000177
0328	Углерод (Пигмент черный)	0.0001167	0.000117
0330	Сера диоксид	0.0001867	0.000195
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0.0020667	0.002180
0401	Углеводороды**	0.0003667	0.000386
	В том числе:		
2732	**Керосин (Керосин прямой перегонки; керосин дезодорированный)	0.0003667	0.000386

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000826
Переходный	Вся техника	0.000542
Холодный	Вся техника	0.000811
Всего за год		0.002180

Максимальный выброс составляет: 0.0020667 г/с. Месяц достижения: Январь.

Наименован ие	Ml	Кнтр	Схр	Выброс (г/с)
MA3 5337	6.200	1.0	да	0.0020667
2029 (д)				

Выбрасываемое вещество - 0401 - Углеводороды

Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000146
Переходный	Вся техника	0.000096
Холодный	Вся техника	0.000144
Всего за год		0.000386

Максимальный выброс составляет: 0.0003667 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
MA3 5337	1.100	1.0	да	0.0003667
2029 (д)		VA. 1		

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000567
Переходный	Вся техника	0.000340
Холодный	Вся техника	0.000458
Всего за год		0.001365

Максимальный выброс составляет: 0.0011667 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
MA3 5337 2029 (д)	3.500	1.0	да	0.0011667

Выбрасываемое вещество - 0328 - Углерод (Пигмент черный) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000041
Переходный	Вся техника	0.000031
Холодный	Вся техника	0.000046
Всего за год		0.000117

Максимальный выброс составляет: 0.0001167 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
MA3 5337	0.350	1.0	да	0.0001167
2029 (д)				

Выбрасываемое вещество - 0330 - Сера диоксид Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000073
Переходный	Вся техника	0.000049
Холодный	Вся техника	0.000073
Всего за год		0.000195

Максимальный выброс составляет: 0.0001867 г/с. Месяц достижения: Январь.

Наименован ие	MI	Кнтр	Схр	Выброс (г/с)
MA3 5337	0.560	1.0	да	0.0001867
2029 (д)				

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Двуокись азота; пероксид азота) Коэффициент трансформации - 0.8 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000454
Переходный	Вся техника	0.000272
Холодный	Вся техника	0.000366
Всего за год		0.001092

Максимальный выброс составляет: 0.0009333 г/с. Месяц достижения: Январь.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азот монооксид) Коэффициент трансформации - 0.13 Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000074
Переходный	Вся техника	0.000044
Холодный	Вся техника	0.000060
Всего за год		0.000177

Максимальный выброс составляет: 0.0001517 г/с. Месяц достижения: Январь.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин (Керосин прямой перегонки; керосин дезодорированный) Валовые выбросы

Период года	Марка автомобиля или дорожной техники	Валовый выброс (тонн/период) (тонн/год)
Теплый	Вся техника	0.000146
Переходный	Вся техника	0.000096

Холодный	Вся техника	0.000144
Всего за год		0.000386

Максимальный выброс составляет: 0.0003667 г/с. Месяц достижения: Январь.

Наименован ие	Ml	Кнтр	%%	Схр	Выброс (г/с)
MA3 5337	1.100	1.0	100.0	да	0.0003667
2029 (д)					

Суммарные выбросы по предприятию

Код 6-ва	Название вещества	Валовый выброс (m/год)
0301	Азота диоксид (Двуокись азота; пероксид азота)	20.266884
0304	Азот (II) оксид (Азот монооксид)	3.293369
0328	Углерод (Пигмент черный)	3.559195
0330	Сера диоксид	2.283951
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	19.908002
0401	Углеводороды	5.385107

Расшифровка суммарного выброса углеводородов (код 0401)

Код 6-ва	Название вещества	Валовый выброс (m/год)
2704	Бензин (нефтяной, малосернистый) (в пересчете на углерод)	0.086860
2732	Керосин (Керосин прямой перегонки; керосин дезодорированный)	5.298246

8004

Расчет произведен программой «АЗС-ЭКОЛОГ», версия 2.3.16 от 01.03.2021

Соругіght© 2008-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №81557 Усольский калийный комбинат. Комплекс ствола № 3

Площадка: 1 Цех: 4 Вариант: 1

Тип источника выбросов: Автозаправочные станции Название источника выбросов: №8004 Заправка ДТ

Источник выделения: №1 Источник №1 Наименование жидкости: Дизельное топливо Вид хранимой жидкости: Дизельное топливо

Результаты расчетов по источнику выделения

Максимально-разовый выброс, г/с	Валовый выброс, т/год
0.0029830	0.000160

Код	Название вещества	Содержание, %	Максимально-разовый выброс, г/с	Валовый выброс, т/год
0333	Дигидросульфид (Сероводород)	0.28	0.0000084	0.000000
2754	Углеводороды предельные С12-С19	99.72	0.0029746	0.000159

Расчетные формулы

Максимально-разовый выброс при закачке в баки автомобилей:

$$M = C_6^{\text{max}} \cdot V_{\text{u. факт}} \cdot (1 - n_2 / 100) / 3600, r/c (7.2.2 [1])$$

Валовый выброс нефтепродуктов:

$$G=G^{3aK}+G^{rap}$$
, т/год (7.2.3 [1])

Валовый выброс нефтепродуктов при закачке в баки машин:

$$G^{3aK} = [C_6^{os} \cdot (1-n_2/100) \cdot Q^{os} + C_6^{BJ} \cdot (1-n_2/100) \cdot Q^{BJ}] \cdot 10^{-6}, \text{ т/год } (7.2.4 [1])$$

Валовый выброс нефтепродуктов при проливах:

$$G^{\text{пр.}}=0.5 \cdot J \cdot (Q^{\text{os}}+Q^{\text{вл}}) \cdot 10^{-6}, \text{ т/год } (1.35 [2])$$

Валовый выброс при стекании нефтепродуктов со стенок заправочного шланга одной ТРК:

$$G^{\text{пр. трк. от одной колонки}} = G^{\text{пр. трк.}}/k = 0.000037, \ \text{т/год}$$

Исходные данные

Конструкция резервуара: наземный горизонтальный

Максимальная концентрация паров нефтепродукта при заполнении баков автомашин, г/куб. м (C_6^{max}): 3.140

Нефтепродукт: дизельное топливо

Климатическая зона: 2

Фактический максимальный расход топлива через ТРК, куб. м/ч ($V_{\nu, dakt}$): 3.420

Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров, г/куб.

M:

Весна-лето ($C_p^{\text{вл}}$): 1.32 Осень-зима ($C_p^{\text{оз}}$): 0.96

Концентрация паров нефтепродуктов в выбросах паровоздушной смеси при заполнении баков автомашин, г/куб. м:

Весна-лето (С_б^{вл}): 2.2

Осень-зима (Сбоз): 1.6

Количество нефтепродуктов, закачиваемое в резервуар, куб. м:

Весна-лето ($Q^{\text{вл}}$): 0.000 Осень-зима (Q^{os}): 6.000

Сокращение выбросов при закачке резервуаров, % (n₁): 0.00 Сокращение выбросов при заправке баков, % (n₂): 0.00 Удельные выбросы при проливах, r/m^3 (J): 50

Число топливно-раздаточных колонок: (k):4

Программа основана на следующих методических документах:

1. «Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров», утвержденные приказом Госкомэкологии России N 199 от 08.04.1998.

Учтены дополнения от 1999 г., введенные НИИ Атмосфера. Письмо НИИ Атмосфера от 29.09.2000 г. по дополнению расчета выбросов на АЗС.

- 2. «Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное)», НИИ Атмосфера, Санкт-Петербург, 2012 год.
- 3. Приказ Министерства энергетики РФ от 13 августа 2009 г. N 364 Об утверждении норм естественной убыли нефтепродуктов при хранении (в ред. Приказа Минэнерго РФ от 17.09.2010 N 449)
- 4. Методическое письмо НИИ Атмосфера №07-2-465/15-0 от 06.08.2015

8005

Расчет произведен программой «Сварка» версия 3.1.23 от 24.05.2021

Copyright© 1997-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8005 Сварочные работы

Операция: №1 Операция № 1

Результаты расчетов

Код	Название вещества	вещества Без учета очистки		Очистка (η1)	С учетом	очистки
		г/с	т/год	%	г/с	т/год
0123	Железа оксид	0.0015144	0.010866	0.00	0.0015144	0.010866
0143	Марганец и его соединения	0.0001303	0.000935	0.00	0.0001303	0.000935
0301	Азот (IV) оксид (Азота диоксид)	0.0005313	0.003812	0.00	0.0005313	0.003812
0337	Углерод оксид	0.0047104	0.033796	0.00	0.0047104	0.033796
0342	Фториды газообразные	0.0002656	0.001906	0.00	0.0002656	0.001906
0344	Фториды плохо растворимые	0.0004675	0.003354	0.00	0.0004675	0.003354
2908	Пыль неорганическая: 70-20% SiO2	0.0001983	0.001423	0.00	0.0001983	0.001423

Расчетные формулы

Расчет производился с учетом двадцатиминутного осреднения.

 $M_M=B_3 \cdot K \cdot K_{rp.} \cdot (1-\eta_1) \cdot t_i/1200/3600, r/c (2.1, 2.1a [1])$

 $M_{M}^{r}=3.6\cdot M_{M}\cdot T\cdot 10^{-3}$, т/год (2.8, 2.15 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Исходные данные

Технологическая операция: Ручная дуговая сварка

Технологический процесс (операция): Ручная дуговая сварка сталей штучными электродами Марка материала: УОНИ-13/45

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Удельные выделения загрязняющих веществ

Код	Название вещества	К, г/кг
	0123 Железа оксид	10.6900000
	0143 Марганец и его соединения	0.9200000
	0301 Азот (IV) оксид (Азота диоксид)	1.5000000
	0337 Углерод оксид	13.3000000
9	0342 Фториды газообразные	0.7500000
	0344 Фториды плохо растворимые	3.3000000
	2908 Пыль неорганическая: 70-20% SiO2	1.4000000

Фактическая продолжительность технологической операции сварочных работ в течение года (T): 1993 час 0 мин

Расчётное значение количества электродов (Вэ)

 B_3 =G·(100-н)·10⁻²=1.275 кг

Масса расходуемых электродов за час (G), кг: 1.5

Норматив образования огарков от расхода электродов (н), %: 15

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц $(K_{rp.})$: 0.4

Программа основана на документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 4. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Расчет произведен программой «Лакокраска» версия 3.1.14 от 24.05.2021

Copyright© 1997-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8006 Окрасочные работы Тип источника выбросов: Неорганизованный источник

Операция: №2 Эмаль

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (η1)	С учетом очистки	
		г/с	т/год	%	r/c	т/год
	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)	0.0091573	0.004626	0.00	0.0091573	0.004626
0621	Метилбензол (Толуол)	0.0004376	0.000221	0.00	0.0004376	0.000221
1210	Бутилацетат	0.0072644	0.003670	0.00	0.0072644	0.003670
1401	Пропан-2-он (Ацетон)	0.0077241	0.003902	0.00	0.0077241	0.003902
2902	Взвешенные вещества	0.0054667	0.001043	0.00	0.0054667	0.001043

Расчетные формулы

Расчет выброса летучей части:

Максимальный выброс (M_M)

 $M_M = MAKC(M_o, M_o^c), r/c$

Максимальный выброс для операций окраски (M_o)

 $M_o=P_o\cdot\delta'_p\cdot f_p\cdot (1-\eta_1)\cdot\delta_i/1000\cdot t_i/1200/3600, r/c (4.5, 4.6 [1])$

Максимальный выброс для операций сушки (Moc)

 $M_o{}^c = P_c \cdot \delta \text{''}_p \cdot f_p \cdot (1 - \eta_1) \cdot \delta_i / 1000 \cdot t_i / 1200 / 3600, \text{ r/c } (4.7, \, 4.8 \, [1])$

Валовый выброс для операций окраски (Мог)

 $M_o^r = M_o \cdot T \cdot 3600 \cdot 10^{-6}, \text{ T/rog} (4.13, 4.14 [1])$

Валовый выброс для операций сушки (${\rm M_{\circ}}^{\rm r}$)

 $M_c^r = M_o^c \cdot T_c \cdot 3600 \cdot 10^{-6}$, т/год (4.15, 4.16 [1])

Валовый выброс (Мг)

 $M^r = M_o^r + M_c^r$, т/год (4.17 [1])

Расчет выброса аэрозоля:

Максимальный выброс аэрозоля (M_o^a)

 $M_o{}^a = P_o \cdot \delta'_a \cdot (100 - f_p) \cdot (1 - \eta_1) \cdot K_{rp.} \cdot K_o / 10 \cdot t / 1200 / 3600, r/c (4.3, 4.4 [1])$

В аловый выброс аэрозоля $(M_o{}^{a,r})$

 $M_o^{a,r}=M_o^a \cdot T \cdot 3600 \cdot 10^{-6}$, т/год (4.11, 4.12 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта $K_o = 1$, т.к. длина воздуховода менее 2 м (либо воздуховод отсутствует)

Исходные данные

Используемый лакокрасочный материал:

Вид	Марка	fp%
Эмаль	ЭП-1236	59.000

f_p - доля летучей части (растворителя) в ЛКМ

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Расчет производился с учетом двадцатиминутного осреднения.

Масса ЛКМ, расходуемых на выполнение окрасочных работ (Po), кг/ч: 0.4

Масса покрытия ЛКМ, высушиваемого за 1 час (Рс), кт/ч: 0.2

Способ окраски:

Способ окраски	Доля аэрозоля при	Пары растворителя (%, м	ас. от общего содержания
	окраске	растворителя в краске)	
	при окраске (δа), %	при окраске (δ'p), %	при сушке (δ" _p), %
Пневматический	30.000	25.000	75.000

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц $(K_{rp.})$: 0.4

Операция производилась полностью.

Общая продолжительность операций сушки за год (Тс), ч: 105

Общая продолжительность операций нанесения ЛКМ за год (Т), ч. 53

Содержание компонентов в летучей части ЛКМ

оодержиние же	OGEPANISHE REMIEDED DIET JUNE METHODEN						
Код	Название вещества	Содержание компонента в летучей части (δ _i),					
		%					
06	16 Диметилбензол (Ксилол) (смесь изомеров о-,	37.250					
	М-, П-)						
06	21 Метилбензол (Толуол)	1.780					
12	10 Бутилацетат	29.550					
14	1 Пропан-2-он (Ацетон)	31.420					

Программа основана на методических документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выделений)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 3. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Расчет произведен программой «Лакокраска» версия 3.1.14 от 24.05.2021

Copyright© 1997-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8006 Окрасочные работы Тип источника выбросов: Неорганизованный источник Операция: №1 Грунтовка на эпоксидной смоле

Результаты расчетов

Код	Название вещества	Без учета	очистки	Очистка (η1)	С учетом очистки	
		г/с	т/год	%	г/с	т/год
0000	2,4,6-трис (диметиламинометил) фенол	0.0002204	0.001085	0.00	0.0002204	0.001085
0616	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)	0.0019404	0.009556	0.00	0.0019404	0.009556
0627	Этилбензол	0.0011180	0.005506	0.00	0.0011180	0.005506
1042	Бутан-1-ол (Спирт н-бутиловый)	0.0009729	0.004791	0.00	0.0009729	0.004791
1117	1-Метоксипропан-2-ол (альфа-Метиловый эфир пропиленгликоля)	0.0002204	0.001085	0.00	0.0002204	0.001085
1865	N,N'-Бис-(2-аминоэтил)-1,2-эта ндиамин (Триэтилентетраамин)	0.0000538	0.000265	0.00	0.0000538	0.000265
2750	Сольвент нафта	0.0008493	0.004182	0.00	0.0008493	0.004182
2902	Взвешенные вещества	0.0116133	0.021448	0.00	0.0116133	0.021448

Гигиенический норматив для некоторых веществ не установлен

Расчетные формулы

Расчет выброса летучей части:

Максимальный выброс (M_M)

 $M_M = MAKC(M_o, M_o^c), r/c$

Максимальный выброс для операций окраски (M_o)

 $M_o=P_o\cdot\delta'_p\cdot f_p\cdot (1-\eta_1)\cdot\delta_i/1000\cdot t_i/1200/3600, r/c (4.5, 4.6 [1])$

Максимальный выброс для операций сушки (Moc)

 $M_o^c = P_c \cdot \delta''_p \cdot f_p \cdot (1 - \eta_1) \cdot \delta_i / 1000 \cdot t_i / 1200 / 3600, r/c (4.7, 4.8 [1])$

Валовый выброс для операций окраски (M_o^r)

 $M_o^r = M_o \cdot T \cdot 3600 \cdot 10^{-6}$, т/год (4.13, 4.14 [1])

Валовый выброс для операций сушки (M_o^r)

 $M_c^r = M_o^c \cdot T_c \cdot 3600 \cdot 10^{-6}$, т/год (4.15, 4.16 [1])

Валовый выброс (Мг)

 $M^r = M_o^r + M_c^r$, т/год (4.17 [1])

Расчет выброса аэрозоля:

Максимальный выброс аэрозоля $(M_o{}^a)$

 $M_o^a = P_o \cdot \delta'_a \cdot (100 - f_p) \cdot (1 - \eta_1) \cdot K_{rp} \cdot K_o / 10 \cdot t / 1200 / 3600, r/c (4.3, 4.4 [1])$

Валовый выброс аэрозоля (M_o^{a,r})

 $M_0^{a,r}=M_0^a \cdot T \cdot 3600 \cdot 10^{-6}$, т/год (4.11, 4.12 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта $K_o = 1$, т.к. длина воздуховода менее 2 м (либо воздуховод отсутствует)

Исходные данные

Используемый лакокрасочный материал:

Вид	Марка	fp%
Грунтовка	HEMPADUR ZINC 17360	12.900

f_p - доля летучей части (растворителя) в ЛКМ

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Расчет производился с учетом двадцатиминутного осреднения.

Масса ЛКМ, расходуемых на выполнение окрасочных работ (Po), кг/ч: 0.4

Масса покрытия ЛКМ, высушиваемого за 1 час (Рс), кт/ч: 0.2

Способ окраски:

Способ окраски	Доля аэрозоля при	Пары растворителя (%, мас. от общего содер:	
*	окраске растворителя в г		пя в краске)
	при окраске (δ_a) , %	при окраске (δ'_p) , %	при сушке (δ" _p), %
Пневматический	30.000	25.000	75.000

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц (K_{rp}) : 0.4

Операция производилась полностью.

Общая продолжительность операций сушки за год (Тс), ч: 1026

Общая продолжительность операций нанесения ЛКМ за год (Т), ч: 513

Содержание компонентов в летучей части ЛКМ

Код		Название вещества	Содержание компонента в летучей части (δ_i),
			%
		2,4,6-трис (диметиламинометил) фенол	4.100
	0616	Диметилбензол (Ксилол) (смесь изомеров о-,	36.100
		м-, п-)	
	0627	Этилбензол	20.800
	1042	Бутан-1-ол (Спирт н-бутиловый)	18.100
	1117	1-Метоксипропан-2-ол (альфа-Метиловый	4.100
		эфир пропиленгликоля)	
	1865	N,N'-Бис-(2-аминоэтил)-1,2-этандиамин	1.000
		(Триэтилентетраамин)	
	2750	Сольвент нафта	15.800

Программа основана на методических документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выделений)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 3. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Расчет произведен программой «Сварка» версия 3.1.23 от 24.05.2021

Соругіght© 1997-2021 Фирма «Йнтеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8007 Сварочные работы подземная часть

Операция: №1 Операция № 1

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (η1)	С учетом очистки	
		г/с	т/год	%	г/с	т/год
0123	Железа оксид	0.0015144	0.002181	0.00	0.0015144	0.002181
0143	Марганец и его соединения	0.0001303	0.000188	0.00	0.0001303	0.000188
0301	Азот (IV) оксид (Азота диоксид)	0.0005313	0.000765	0.00	0.0005313	0.000765
0337	Углерод оксид	0.0047104	0.006783	0.00	0.0047104	0.006783
0342	Фториды газообразные	0.0002656	0.000383	0.00	0.0002656	0.000383
0344	Фториды плохо растворимые	0.0004675	0.000673	0.00	0.0004675	0.000673
2908	Пыль неорганическая: 70-20% SiO2	0.0001983	0.000286	0.00	0.0001983	0.000286

Расчетные формулы

Расчет производился с учетом двадцатиминутного осреднения.

 $M_{\text{M}}\!\!=\!\!B_{\!\scriptscriptstyle 3}\!\cdot\! K\!\cdot\! K_{rp.}\!\cdot\! (1\!-\!\eta_1)\!\cdot\! t_i\!/1200\!/3600,\,r/c\;(2.1,\,2.1a\,\text{\small{[1]}})$

 $M_{M}^{r}=3.6\cdot M_{M}\cdot T\cdot 10^{-3}$, т/год (2.8, 2.15 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Исходные данные

Технологическая операция: Ручная дуговая сварка

Технологический процесс (операция): Ручная дуговая сварка сталей штучными электродами Марка материала: УОНИ-13/45

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Удельные выделения загрязняющих веществ

Код		Название вещества	К, г/кг	
64	0123	Железа оксид		10.6900000
	0143	Марганец и его соединения		0.9200000
	0301	Азот (IV) оксид (Азота диоксид)		1.5000000
	0337	Углерод оксид		13.3000000
	0342	Фториды газообразные		0.7500000
	0344	Фториды плохо растворимые		3.3000000
	2908	Пыль неорганическая: 70-20% SiO2		1.4000000

Фактическая продолжительность технологической операции сварочных работ в течение года (T): 400 час 0 мин

Расчётное значение количества электродов (Вэ)

В₃=G·(100-н)·10-2=1.275 кг

Масса расходуемых электродов за час (G), кг: 1.5

Норматив образования огарков от расхода электродов (н), %: 15

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц $(K_{\rm Tp.})$: 0.4

Программа основана на документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 4. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Расчет произведен программой «Сварка» версия 3.1.23 от 24.05.2021

Copyright© 1997-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8007 Сварочные работы подземная часть

Операция: №1 Операция № 1

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (η1)	С учетом очистки		
		г/с	т/год	%	г/с	т/год	
0123	Железа оксид	0.0015144	0.002181	0.00	0.0015144	0.002181	
0143	Марганец и его соединения	0.0001303	0.000188	0.00	0.0001303	0.000188	
0301	Азот (IV) оксид (Азота диоксид)	0.0005313	0.000765	0.00	0.0005313	0.000765	
0337	Углерод оксид	0.0047104	0.006783	0.00	0.0047104	0.006783	
0342	Фториды газообразные	0.0002656	0.000383	0.00	0.0002656	0.000383	
0344	Фториды плохо растворимые	0.0004675	0.000673	0.00	0.0004675	0.000673	
2908	Пыль неорганическая: 70-20% SiO2	0.0001983	0.000286	0.00	0.0001983	0.000286	

Расчетные формулы

Расчет производился с учетом двадцатиминутного осреднения.

 $M_M=B_9 \cdot K \cdot K_{rp.} \cdot (1-\eta_1) \cdot t_i/1200/3600, r/c (2.1, 2.1a[1])$

 $M^r_M = 3.6 \cdot M_M \cdot T \cdot 10^{-3}$, т/год (2.8, 2.15 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Исходные данные

Технологическая операция: Ручная дуговая сварка

Технологический процесс (операция): Ручная дуговая сварка сталей штучными электродами Марка материала: УОНИ-13/45

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Удельные выделения загрязняющих веществ

Код		Название вещества	К, г/кг	
5.5	0123	Железа оксид		10.6900000
	0143	Марганец и его соединения		0.9200000
	0301	Азот (IV) оксид (Азота диоксид)		1.5000000
	0337	Углерод оксид		13.3000000
	0342	Фториды газообразные		0.7500000
	0344	Фториды плохо растворимые		3.3000000
	2908	Пыль неорганическая: 70-20% SiO2		1.4000000

Фактическая продолжительность технологической операции сварочных работ в течение года (T): 400 час 0 мин

Расчётное значение количества электродов ($B_{\scriptscriptstyle 9}$)

В₃=G·(100-н)·10-2=1.275 кг

Масса расходуемых электродов за час (G), кг: 1.5

Норматив образования огарков от расхода электродов (н), %: 15

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц $(K_{\rm Tp.})$: 0.4

Программа основана на документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 4. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Расчет произведен программой «Лакокраска» версия 3.1.14 от 24.05.2021

Copyright© 1997-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8008 Окрасочные работы подземная часть

Тип источника выбросов: Неорганизованный источник

Операция: №1 Операция № 1

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (η1)	С учетом очистки		
		г/с	т/год	%	r/c	т/год	
	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)	0.0091573	0.351640	0.00	0.0091573	0.351640	
0621	Метилбензол (Толуол)	0.0004376	0.016803	0.00	0.0004376	0.016803	
1210	Бутилацетат	0.0072644	0.278952	0.00	0.0072644	0.278952	
1401	Пропан-2-он (Ацетон)	0.0077241	0.296605	0.00	0.0077241	0.296605	
2902	Взвешенные вещества	0.0054667	0.078720	0.00	0.0054667	0.078720	

Расчетные формулы

Расчет выброса летучей части:

Максимальный выброс (M_M)

 $M_M = MAKC(M_o, M_o^c), \Gamma/c$

Максимальный выброс для операций окраски (M_o)

 $M_o=P_o\cdot\delta'_p\cdot f_p\cdot (1-\eta_1)\cdot\delta_i/1000\cdot t_i/1200/3600, r/c (4.5, 4.6 [1])$

Максимальный выброс для операций сушки (Moc)

 $M_{o}{}^{c} = P_{c} \cdot \delta \text{''}_{p} \cdot f_{p} \cdot (1 - \eta_{1}) \cdot \delta_{i} / 1000 \cdot t_{i} / 1200 / 3600, \text{ r/c } (4.7, 4.8 \text{ [1]})$

Валовый выброс для операций окраски (Мог)

 $M_o^r = M_o \cdot T \cdot 3600 \cdot 10^{-6}, \text{ T/rog} (4.13, 4.14 [1])$

Валовый выброс для операций сушки (${\rm M_{\circ}}^{\rm r}$)

 $M_c^r = M_o^c \cdot T_c \cdot 3600 \cdot 10^{-6}$, т/год (4.15, 4.16 [1])

Валовый выброс (Мг)

 $M^r = M_o^r + M_c^r$, т/год (4.17 [1])

Расчет выброса аэрозоля:

Максимальный выброс аэрозоля ($M_o{}^a$)

 $M_o{}^a = P_o \cdot \delta'_a \cdot (100 - f_p) \cdot (1 - \eta_1) \cdot K_{rp.} \cdot K_o / 10 \cdot t / 1200 / 3600, r/c (4.3, 4.4 [1])$

В аловый выброс аэрозоля $(M_o{}^{a,r})$

 $M_o^{a,r}=M_o^a \cdot T \cdot 3600 \cdot 10^{-6}$, т/год (4.11, 4.12 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Коэффициент оседания аэрозоля краски в зависимости от длины газовоздушного тракта $K_o = 1$, т.к. длина воздуховода менее 2 м (либо воздуховод отсутствует)

Исходные данные

Используемый лакокрасочный материал:

Вид	Марка	fp%
Эмаль	ЭП-1236	59.000

f_p - доля летучей части (растворителя) в ЛКМ

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Расчет производился с учетом двадцатиминутного осреднения.

Масса ЛКМ, расходуемых на выполнение окрасочных работ (Po), кг/ч: 0.4

Масса покрытия ЛКМ, высушиваемого за 1 час (Рс), кт/ч: 0.2

Способ окраски:

Способ окраски	Доля аэрозоля при	Пары растворителя (%, м	ас. от общего содержания
	окраске	растворите	пя в краске)
	при окраске (δа), %	при окраске (δ'p), %	при сушке (δ" _p), %
Пневматический	30.000	25.000	75.000

Поправочный коэффициент, учитывающий гравитационное осаждение крупнодисперсных твердых частиц $(K_{rp.})$: 0.4

Операция производилась полностью.

Общая продолжительность операций сушки за год (T_c), ч: 8000

Общая продолжительность операций нанесения ЛКМ за год (Т), ч. 4000

Содержание компонентов в летучей части ЛКМ

оодержиние же	ogeneration relations to the first t										
Код	Название вещества	Содержание компонента в летучей части (δ _i),									
		%									
06	16 Диметилбензол (Ксилол) (смесь изомеров о-,	37.250									
	М-, П-)										
06	21 Метилбензол (Толуол)	1.780									
12	10 Бутилацетат	29.550									
14	1 Пропан-2-он (Ацетон)	31.420									

Программа основана на методических документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при нанесении лакокрасочных материалов (по величинам удельных выделений)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 3. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

Ц.2 Расчеты количества выбросов загрязняющих веществ на период эксплуатации

4001. Сварочные работы

Расчет произведен программой «Сварка» версия 3.1.23 от 24.05.2021

Copyright© 1997-2021 Фирма «Йнтеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №1 Сварочные работы

Операция: №1 Операция № 1

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (η1)	С учетом очистки		
		r/c	т/год	%	г/с	т/год	
0123	Железа оксид	0.0185701	0.086908	0.00	0.0185701	0.086908	
0143	Марганец и его соединения	0.0019597	0.009172	0.00	0.0019597	0.009172	
2908	Пыль неорганическая: 70-20% SiO2	0.0004840	0.002265	0.00	0.0004840	0.002265	

Расчетные формулы

Расчет производился с учетом двадцатиминутного осреднения.

 $M_M=B_3\cdot K\cdot (1-\eta_1)\cdot t_i/1200/3600$, r/c (2.1, 2.1a [1])

 M^{r}_{M} =3.6· M_{M} ·T·10⁻³, т/год (2.8, 2.15 [1])

При расчете валового выброса двадцатиминутное осреднение не учитывается

Исходные данные

Технологическая операция: Ручная дуговая сварка

Технологический процесс (операция): Ручная дуговая сварка сталей штучными электродами Марка материала: AHO-4

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Удельные выделения загрязняющих веществ

Код	Название вещества	К, г/кг
	0123 Железа оксид	15.7300000
	0143 Марганец и его соединения	1.6600000
	2908 Пыль неорганическая: 70-20% SiO2	0.4100000

Фактическая продолжительность технологической операции сварочных работ в течение года (T): 1300 час 0 мин

Расчётное значение количества электродов (B $_{\scriptscriptstyle 3}$)

В₃=G·(100-н)·10-2=4.25 кг

Масса расходуемых электродов за час (G), кт: 5

Норматив образования огарков от расхода электродов (н), %: 15

Программа основана на документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при сварочных работах (на основе удельных показателей)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012
- 3. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 4. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

ИЗА 4001

Расчет произведен программой «Металлообработка» версия 3.1.26 от 24.05.2021

Copyright© 1997-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №81556 Усольский калийный комбинат. Комплекс ствола № 3

Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №2 Металлообработка

Операция: №3 Операция № 3

Технологическая операция: Механическая обработка металлов

Результаты расчетов

Код	Название вещества	Без учета очистки		Очистка (j)	С учетом очистки		
		г/с	т/год	%	г/с	т/год	
	Пыль абразивная (Корунд белый, Монокорунд)	0.0170000	0.088312	0.00	0.0170000	0.088312	
	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	0.0260000	0.135065	0.00	0.0260000	0.135065	

Расчетные формулы

Расчет выброса пыли:

Максимальный выброс (M_вуог)

для n ИЗА, работающего менее 20-ти минут

 $M_B = n \cdot q_i \cdot t_i / 1200$, r/c (3.2 [1])

 $M_B^{yor}=M_B\cdot(1-j), r/c (3.15[1])$

Валовый выброс (Муог гв)

 $M_B^F = 3.6 \cdot n \cdot q_i \cdot T \cdot 10^{-3}$, т/год (3.13, 3.14 [1])

 $M^{\text{уог } \Gamma}_{\text{B}} = M^{\Gamma}_{\text{B}} \cdot (1-j), \text{ т/год } (3.16 [1])$

Вид оборудования: Круглошлифовальные станки (Диаметр круга 300 мм)

Тип охлаждения: Охлаждение отсутствует

Количество станков (n): 1 шт.

Время работы станка за год (Т): 1443 ч

Продолжительность производственного цикла (t_i): 20 мин. (1200 с)

Удельные выделения загрязняющих веществ

Код	Название вещества	q _i , r/c				
2930	Пыль абразивная (Корунд белый,	0.017000				
	Монокорунд)					
163	Пыль металлическая	0.0260000				

Состав металлической пыли

Код	Название вещества	Содержание компонента, %
0123	диЖелезо триоксид (Железа оксид) (в	100.0
	перес чете на железо)	

Программа основана на следующих методических документах:

- 1. «Методика расчета выделений (выбросов) загрязняющих веществ в атмосферу при механической обработке металлов (материалов) (по величинам удельных выделений)», НИИ Атмосфера, Санкт-Петербург, 2015
- 2. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012

- 3. Расчетная инструкция (методика) «Удельные показатели образования вредных веществ, выделяющихся в атмосферу от основных видов технологического оборудования предприятий радиоэлектронного комплекса», Санкт-Петербург, 2006
- 4. Информационное письмо НИИ Атмосфера №2. Исх. 07-2-200/16-0 от 28.04.2016
- 5. Информационное письмо НИИ Атмосфера №4. Исх. 07-2-650/16-0 от 07.09.2016

ИЗА 4002,4003

Валовые и максимальные выбросы предприятия №81556, Усольский калийный комбинат. К, Пермь, 2022 г.

Расчет произведен программой «АТП-Эколог», версия 3.20.21 от 27.01.2021 © 1995-2021 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
- 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2012 г.
- 6. Письмо НИИ Атмосфера №07-2-263/13-0 от 25.04.2013 г.

Программа зарегистрирована на: ООО "ЕвроХим-Проект" Регистрационный номер: 01-01-6722

Пермь, 2022 г.: среднемесячная и средняя минимальная температура воздуха, ${}^{\circ}\!C$

Хар актеристики	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Среднемесячная температура, °С	-14.9	-13	-5	2.6	9.7	15.4	17.9	14.7	8.9	1.4	-6.3	-12
Расчетные периоды года	X	X	П	П	Т	Т	Т	Т	Т	П	X	X
Средняя минимальная температура, °C	10	10	10	10	10	10	10	10	10	10	10	10
Расчетные периоды года	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

Характеристики периодов года для расчета валовых выбросов загрязняющих веществ

Период года	Месяцы	Всего дней		
Теплый	Май; Июнь; Июль; Август; Сентябрь;	105		
Переходный	Март; Апрель; Октябрь;	63		
Холодный	Январь; Февраль; Ноябрь; Декабрь;	84		
Всего за год	Январь-Декабрь	252		

Участок №4; двигатели грузового транспорта, тип - 3 - Теплая закрытая стоянка (гараж), цех №4, площадка №1, вариант №1

Общее описание участка

Пробег автомобиля до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.002 - от наиболее удаленного от выезда места стоянки: 0.010

Пробег автомобиля от въезда на стоянку (км)

- до ближайшего к въезду места стоянки: 0.002 - до наиболее удаленного от въезда места стоянки: 0.010
- среднее время выезда (мин.): 15.0

Выбросы участка

Kod 6-6a	Название	Макс. выброс (г/с)	Валовый выброс (т/год)
6-6 <i>u</i>	вещества	+	
	Оксиды азота (NOx)*	0.0315500	0.000894
	В том числе:		
0301	*Азота диоксид (Двуокись азота; пероксид	0.0252400	0.000715
	азота)		
0304	*Азот (II) оксид (Азот монооксид)	0.0041015	0.000116
0328	Углерод (Пигмент черный)	0.0010225	0.000029
0330	Сера диоксид	0.0032408	0.000090
0337	Углерода оксид (Углерод окись; углерод	0.0837075	0.002354
	моноокись; угарный газ)		
0401	Углеводороды**	0.0118875	0.000343
	В том числе:		
2732	**Керосин (Керосин прямой перегонки;	0.0118875	0.000343
	керосин дезодорированный)		

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерода оксид (Углерод окись; углерод моноокись; угарный газ) Валовые выбросы

Марка автомобиля	Валовый выброс		
или дорожной техники	(тонн/год)		
ВСЕГО:	0.002354		

Максимальный выброс составляет: 0.0837075 г/с.

Наименован ие	Mnp	Tnp	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
КАМАЗ (д)	3.000	1.5	0.9	1.0	6.100	1.0	2.900	да	0.0837075

Выбрасываемое вещество - 0401 - Углеводороды

Валовые выбросы

Марка автомобиля	Валовый выброс		
или дорожной техники	(тонн/год)		
ВСЕГО:	0.000343		

Максимальный выброс составляет: 0.0118875 г/с.

Наименован ие	Mnp	Tnp	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
КАМАЗ (д)	0.400	1.5	0.9	1.0	1.000	1.0	0.450	да	0.0118875

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)
BCEFO:	0.000894

Максимальный выброс составляет: 0.0315500 г/с.

Наименован ие	Mnp	Tnp	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
КАМАЗ (д)	1.000	1.5	1.0	1.0	4.000	1.0	1.000	да	0.0315500

Выбрасываемое вещество - 0328 - Углерод (Пигмент черный) Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)
ВСЕГО:	0.000029

Максимальный выброс составляет: 0.0010225 г/с.

Наименован ие	Mnp	Tnp	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
КАМАЗ (д)	0.040	1.5	0.8	1.0	0.300	1.0	0.040	да	0.0010225

Выбрасываемое вещество - 0330 - Сера диоксид Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)			
ВСЕГО:	0.000090			

Максимальный выброс составляет: 0.0032408 г/с.

Наименован ие	Mnp	Tnp	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
КАМАЗ (д)	0.113	1.5	0.9	1.0	0.540	1.0	0.100	да	0.0032408

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Двуокись азота; пероксид азота) Коэффициент трансформации - 0.8

Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)
ВСЕГО:	0.000715

Максимальный выброс составляет: 0.0252400 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азот монооксид) Коэффициент трансформации - 0.13 Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)
ВСЕГО:	0.000116

Максимальный выброс составляет: 0.0041015 г/с.

Распределение углеводородов Выбрасываемое вещество - 2732 - Керосин (Керосин прямой перегонки; керосин дезодорированный) Валовые выбросы

Марка автомобиля	Валовый выброс
или дорожной техники	(тонн/год)
ВСЕГО:	0.000343

Максимальный выброс составляет: 0.0118875 г/с.

Наименован ие	Mnp	Tnp	Кэ	КнтрП Р	Ml	Кнтр	Mxx	%%	Схр	Выброс (г/с)
КАМАЗ (д)	0.400	1.5	0.9	1.0	1.000	1.0	0.450	100.0	да	0.0118875

Суммарные выбросы по предприятию

Код 6-ва	Название вещества	Валовый выброс (m/год)
0301	Азота диоксид (Двуокись азота; пероксид азота)	0.000715
0304	Азот (II) оксид (Азот монооксид)	0.000116
0328	Углерод (Пигмент черный)	0.000029
0330	Сера диоксид	0.000090
0337	Углерода оксид (Углерод окись; углерод моноокись; угарный газ)	0.002354
0401	Углеводороды	0.000343

Расшифровка суммарного выброса углеводородов (код 0401)

Код	Название	Валовый выброс
6-6а	вещества	(m/20d)

2732	Керосин (Керосин прямой перегонки; керосин	0.000343
	дезодорированный)	

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №3 горелка Unigas NG350 M

Источник выделения: №1 Котел № 1

Результаты расчетов

Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
		выброс, г/с	207
0301	Азот (IV) оксид	0.0044363	0.087768
0304	Азот (II) оксид	0.0007209	0.014262
0337	Углерод оксид	0.0212276	0.419970
0703	Бенз/а/пирен	0.0000000086	0.0000001692

Исходные данные

Наименование топлива: Газопровод Бухара-Урал

Тип топлива: Газ Характер топлива: Газ

Фактический расход топлива (В, В')

B = 114.372 тыс.м³/год

B' = 5.781 n/c

Котел водогрейный.

1. Расчет выбросов оксидов азота при сжигании природного газа

Расчетный расход топлива (B_p, B_p')

 $B_p = B = 114.372 \text{ тыс.м}^3/год$

 $B_p'' = B' = 5.781 \text{ m/c} = 0.005781 \text{ m}^3/\text{c}$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 36.72 \text{ MДж/м}^3$

Удельный выброс оксидов азота при сжигании газа (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 5496 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{τ}, Q_{τ}')

 $Q_r = B_p / Time / 3.6 \cdot Q_r = 0.21226 \text{ MB} \tau$

 $Q_{r}' = B_{p}' \cdot Q_{r} = 0.21228 \text{ MBT}$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.03 = 0.0352061 \text{ г/МДж}$

 K_{NO2} ' = 0.0113·(Q_r '0.5)+0.03 = 0.0352063 г/МДж

Коэффициент, учитывающий температуру воздуха (β_t)

Температура горячего воздуха $t_{rB} = 60$ $^{\circ}C$

 $\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1.06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (βа)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование

оксидов азота (Вг)

Степень рециркуляции дымовых газов т= 0 %

$$\beta_r = 0.16 \cdot (r^{0.5}) = 0$$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0 \%$

 $\beta_d = 0.022 \cdot \delta = 0$

Выброс оксидов азота (M_{NOx} , M_{NOx} , M_{NO} , M_{NO} , M_{NO2} , M_{NO2} , M_{NO2})

 $k\pi = 0.001$ (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_r = 114.372 \cdot 36.72 \cdot 0.0352061 \cdot 0.7 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.1097096$ typa

 $M_{NOx}{}' = B_p{}' \cdot Q_r \cdot K_{NO2}{}' \cdot \beta_k{}' \beta_t{}' \beta_t{}' (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0.005781 \cdot 36.72 \cdot 0.0352063 \cdot 0.7 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.0055454 \text{ r/c}$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.0142622$ т/год

 $M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0007209 \text{ r/c}$

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.0877677$ т/год

 $M_{NO2}' = 0.8 \cdot M_{NOx}' = 0.0044363 \text{ r/c}$

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 114.372 тыс. $M^3/год$

 $B' = 5.781 \text{ m/c} = 0.00578 \text{ m}^3/\text{c}$

Содержание серы в топливе на рабочую массу (S_{г серы}, S_{г серы}')

 $S_{r \text{ серы}} = 0 \% (для валового)$

 $S_{r \text{ серы}}' = 0 \%$ (для максимально-разового)

Содержание сероводорода в топливе на рабочую массу (\(\Delta Sr \))

 $\Delta S_r = 0.94 \cdot H_2 S = 0 \%$

Содержание сероводорода на рабочую массу топлива, H₂S=0 %

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2})

Тип топлива : Газ

 η_{SO2} ' = 0

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц

 $(\eta_{SO2}"): 0$

Плотность топлива (Рг): 0.753

Выброс диоксида серы (M_{SO2}, M_{SO2}')

 $M_{SO2} = 0.02 \cdot B \cdot (S_{r \text{ серы}} + \Delta S_r) \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) \cdot P_r = 0$ т/год

 $M_{SO2}{'} = 0.02 \cdot B{'} \cdot (S_{r \; \text{cepsi}} + \Delta S_r) \cdot (1 - \eta_{SO2}{'}) \cdot (1 - \eta_{SO2}{'}) \cdot 1000 \cdot P_r = 0 \; r/c$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 114.372тыс. м³/год

 $B' = 5.781 \text{ m/c} = 0.00578 \text{ m}^3/\text{c}$

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q3):

Среднее: 0.2 % Максимальное :0.2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

 Γ аз. R = 0.5

Низшая теплота сгорания топлива (Q_r): 36.72 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: 3.672 г/кг (г/нм³) или кг/т (кг/тыс.нм³) Максимальное :3.672 г/кг (г/нм³) или кт/т (кг/тыс.нм³)

Потери тепла вследствие механической неполноты сгорания топлива (q₄)

Среднее: 0.001 % Максимальное: 0.001 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 0.4199698$ т/год

 $M_{CO}' = B' \cdot C_{CO} \cdot (1-q_4/100) = 0.0212276 \text{ r/c}$

4. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_π) :

 $K_{\text{H}} = 2.6 - 3.2 \cdot (D_{\text{OTH}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) K_{cr} : 0

 $K_{c\tau} = K_{c\tau}$ '/0.14+1 = 1

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке $(B_\mathfrak{p})$:

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0057809 \text{ кг/с (м}^3/c)$

Максимальное: $B_p = B_H \cdot (1-q_4/100) = 0.0057809 \text{ кг/с (м}^3/c)$

Фактический расход топлива на номинальной нагрузке ($B_{\rm H}$): $0.005781~{\rm kr/c}~({\rm m}^3/c)$

Низшая теплота сгорания топлива (Q_r): 36720 кДж/кг (кДж/м³)

Объем топочной камеры (V_{T}): 1 M^{3}

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0057809 \cdot 36720 / 1 = 212.2761972 \text{ кBт/м}^3$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0057809 \cdot 36720 / 1 = 212.2761972 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сбя')

Коэффициент избытка воздуха на выходе из топки (α_T "): 1

Среднее: $C_{\text{бn}}' = 0.000001 \cdot ((0.11 \cdot q_v - 7)/\text{Exp}(3.5 \cdot (\alpha_T'' - 1)) \cdot K_{\pi} \cdot K_p \cdot K_{cr}) = 0.0000164 \text{ мг/м}^3$

Максимальное: $C_{\text{бп}}$ ' = 0.000001·((0.11·q_v-7)/Exp(3.5·(α_{T} ''-1))· $K_{\text{д}}$ · K_{p} · K_{cr})= 0.0000164 мг/м³

Концентрация бенз(а)пирена, приведенная к избытку воздуха $\alpha_{\rm O}=1.4~{\rm C}_{\rm бn}={\rm C}_{\rm бn}\cdot\alpha_{\rm T}^{,\,\prime\prime}\alpha_{\rm O}$

Среднее: 0.0000117 мг/м³

Максимальное: 0.0000117 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях ($\alpha_{\rm o}$ =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . ($V_{\rm cr}$)

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.345

Низшая теплота сгорания топлива (Q_r): 36.72 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 12.6684 \text{ м}^3/\text{кт}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена (Мбп, Мбп')

 $M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_p \cdot k_n$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 114.371 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.02081 \text{ T/Y (TMC.M}^3/\text{Y})$

 $C_{6n} = 0.0000117 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\pi} = 0.000278$ (для максимально-разового)

 $M_{\text{бп}} = 0.0000117 \cdot 12.668 \cdot 114.3708563 \cdot 0.0000001 = 0.00000001692$ т/год

 $M_{\text{det}}{}' = 0.0000117 \cdot 12.668 \cdot 0.0208114 \cdot 0.000278 = 0.000000000086 \ r/c$

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №5 горелка Unigas NG400 M

Источник выделения: №1 Котел № 1

Результаты расчетов

Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
	*	выброс, г/с	***
0301	Азот (IV) оксид	0,0086294	0,170732
0304	Азот (II) оксид	0,0014023	0,027744
0337	Углерод оксид	0,0392092	0,775761
0703	Бенз/а/пирен	0,00000000238	0,00000004699

Исходные данные

Наименование топлива: Газопровод Бухара-Урал

Тип топлива: Газ Характер топлива: Газ

Фактический расход топлива (В, В')

 $B = 211,266 \text{ тыс.м}^3/\text{год}$

B' = 10,678 m/c

Котел водогрейный.

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по составу топлива. Топливо газообразное.

Состав топлива

CO = 0 %

 $CO_2 = 0.4 \%$

 $H_2 = 0 \%$

 $H_2S = 0 \%$

 $CH_4 = 94,9 \%$

 $C_2H_6 = 3,2 \%$

 $C_3H_8 = 0,4 \%$

 $C_4H_{10} = 0.1 \%$

 $C_5H_{12} = 0.1 \%$

 $O_2 = 0 \%$ $N_2 = 0.9 \%$

Влагосодержание газообразного топлива, отнесенное к 1 ${
m M}^3$ сухого газа ${
m d}=0,753~{
m r/m}^3$

 $V_o = 0.0476 \cdot (0.5 \cdot \text{CO} + 0.5 \cdot \text{H}_2 + 1.5 \cdot \text{H}_2 \text{S} + \text{Cymma} ((\text{m} + \text{n}/4) \cdot \text{C}_m \text{H}_n) - \text{O}_2) = 9,73182 \text{ m}^3/\text{m}^3$

 $V_{\scriptscriptstyle B} = 0.01 \cdot (H_2 + H_2 S + 0.5 \cdot \Sigma (n \cdot C_m H_n) + 0.124 \cdot d) + 0.0161 \cdot V_o = 2,178616 \text{ m}^3/\text{m}^3$

 $V_r = 0.01 \cdot (CO_2 + CO + H_2S + \Sigma (m \cdot C_m H_n)) + 0.79 \cdot V_o + N_2/100 + V_B = 10.9137538 \text{ m}^3/\text{m}^3$

 $V_{cr} = V_r + (\alpha_o - 1) \cdot V_o - V_B = 12,6278658 \text{ m}^3/\text{m}^3$

1. Расчет выбросов оксидов азота при сжигании природного газа

Расчетный расход топлива (Вр, Вр')

 $B_p = B = 211,266$ тыс.м³/год

 $B_p' = B' = 10,678 \text{ m/c} = 0,010678 \text{ m}^3/\text{c}$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 36,72 \text{ MДж/м}^3$

Удельный выброс оксидов азота при сжигании газа (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 5496 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{τ}, Q_{τ}')

 $Q_T = B_p/Time/3.6 \cdot Q_r = 0.39209 \text{ MB}_T$

$$Q_{\rm T}' = B_{\rm p}' \cdot Q_{\rm r} = 0.3921 \, {\rm MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.03 = 0.0370757 \text{ г/МДж}$

 K_{NO2} ' = 0.0113·(Q_{r} '.0.5)+0.03 = 0,0370758 г/МДж

Коэффициент, учитывающий температуру воздуха (Вt)

Температура горячего воздуха $t_{rs} = 60 \, ^{\circ}\mathrm{C}$

 $\beta_t = 1 + 0.002 \cdot (t_{\text{\tiny FB}} - 30) = 1,06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (βa)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов т= 0 %

 $\beta_r = 0.16 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0~\%$

 $\beta_d = 0.022 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}, M_{NO}, M_{NO}, M_{NO'}, M_{NO2}, M_{NO2'}$)

km = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = B_{\rho} \cdot Q_{r} \cdot K_{NO2} \cdot \beta_{k} \cdot \beta_{t} \cdot \beta_{d} \cdot (1 - \beta_{r}) \cdot (1 - \beta_{d}) \cdot k_{rt} = 211,266 \cdot 36,72 \cdot 0,0370757 \cdot 0,7 \cdot 1,06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0,2134154$ t/rog

 $M_{NOx}{'} = B_p{'} \cdot Q_r \cdot K_{NO2}{'} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0,010678 \cdot 36,72 \cdot 0,0370758 \cdot 0,7 \cdot 1,06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0,0107867 \ r/c$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.027744$ т/год

 $M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0014023 \text{ r/c}$

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.1707323$ т/год

 $M_{NO2}' = 0.8 \cdot M_{NOx}' = 0.0086293 \text{ r/c}$

2. Расчет выбросов диоксида серы

Расчетный расход натурального топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q4)

Среднее: 0,001 % Максимальное: 0,001 %

Расход топлива (В, В') В = 211,266 т/год (тыс.м³/год) В' = 10,678 г/с (л/с)

 $B_p = (1-q_4/100) \cdot B = 211,2638873 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = (1-q_4/100) \cdot B' \cdot 0.0036 = 0.03844 \text{ T/y (TMC.M}^3/\text{y})$

Массовая концентрация загрязняющих веществ в сухих дымовых газах (C_{SO2}). (рассчитанная)

Стандартный коэффициент избытка воздуха в топке
α₀=1.4

Коэффициент избытка воздуха в топке $\alpha_r = 1.4$

Измеренная объемная концентрация при коэффициенте избытка воздуха диоксида серы

Средняя (I_{SO2 изм}): 0 ppm(см³/м³)

Максимальная ($I_{SO2 \text{ изм}}$ '): 0 ppm(см³/м³)

Массовая концентрация диоксида серы при α₀= 1.4

Средняя: $C_{SO2}=I_{SO2 \text{ изм}} \cdot 2.86 \cdot \alpha_T/\alpha_0=0 \text{ мг/нм}^3$

Максимальная: C_{SO2} '= $I_{SO2 \text{ HSM}}$ ' $\cdot 2.86 \cdot \alpha_T/\alpha_0$ =0 мг/нм³

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

Выброс диоксида серы (Mso2, Mso2').

 $\mathbf{M}_{SO2} = \mathbf{C}_{SO2} \cdot \mathbf{V}_{cr} \cdot \mathbf{B}_p \cdot \mathbf{k}_n = 0$ т/год

 M_{SO2} ' = C_{SO2} ' · V_{cr} · B_p ' · $k_n = 0$ r/c

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 211,266тыс. M^3 /год

 $B' = 10,678 \text{ m/c} = 0,01068 \text{ m}^3/\text{c}$

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q_3) :

Среднее: 0,2 %

Максимальное :0,2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Газ. R=0.5

Низшая теплота сгорания топлива (Q_r): 36,72 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: 3,672 г/кг (г/нм³) или кг/т (кг/тыс.нм³) Максимальное :3,672 г/кг (г/нм³) или кг/т (кг/тыс.нм³)

Потери тепла вследствие механической неполноты сгорания топлива (q_4)

Среднее: 0,001 % Максимальное: 0,001 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 0,775761$ т/год

 $M_{CO}' = B' \cdot C_{CO} \cdot (1-q_4/100) = 0,0392092 \text{ r/c}$

4. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_n) :

 $K_{\text{H}} = 2.6 - 3.2 \cdot (D_{\text{oth}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

 $K_{cT} = K_{cT}'/0.14+1 = 1$

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (Вр):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0106779 \text{ кг/с } (\text{м}^3/\text{c})$

Максимальное: $B_p = B_{H} \cdot (1-q\sqrt{100}) = 0.0106779 \text{ kr/c (м}^3/c)$

Фактический расход топлива на номинальной нагрузке (B_н): 0,010678 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 36720 кДж/кг (кДж/м³)

Объем топочной камеры ($V_{\rm T}$): 1 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0106779 \cdot 36720 / 1 = 392.092239 \text{ кВт/м}^3$

Максимальное: $q_v = B_p \cdot Q_r / V_\tau = 0.0106779 \cdot 36720 / 1 = 392,092239 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_{T} "): 1,15

Среднее: $C_{6\pi}$ ' = 0.000001·((0,11·q_v-7)/Exp(3.5·(α_T ''-1))· K_{π} · K_p · $K_{c\tau}$)= 0,0000214 мг/м³

Максимальное: $C_{\text{бп}}$ ' = 0.000001·((0,11· q_v -7)/Exp(3.5·(α_T ''-1))· K_{π} · K_p · K_{cr})= 0,0000214 мг/м³

Среднее: 0,0000176 мг/м³

Максимальное: 0,0000176 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_{o} =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0,345

Низшая теплота сгорания топлива (Q_r): 36,72 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 12,6684 \text{ м}^3/\text{кг}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

 $M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_p \cdot k_n$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 211,264 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.03844 \text{ T/y (TMC.M}^3/\text{y})$

 $C_{\text{бr}} = 0.0000176 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

 $M_{\text{бп}} = 0,0000176 \cdot 12,668 \cdot 211,2638873 \cdot 0.000001 = 0,00000004699 \text{ т/год}$

 $M_{\text{dit}} = 0,0000176 \cdot 12,668 \cdot 0,0384404 \cdot 0.000278 = 0,000000000238 \ r/c$

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тони пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №11 воздухонагреватель ТС 500 Е

Источник выделения: №1 Котел № 1

Результаты расчетов

1 00 , 01	BIGIDI DUCTOR		
Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
	*	выброс, г/с	
0301	Азот (IV) оксид	0.0240357	0.475566
0304	Азот (II) оксид	0.0039058	0.077280
0337	Углерод оксид	0.0659925	1.305717
0703	Бенз/а/пирен	0.00000000195	0.0000003854

Исходные данные

Наименование топлива: Газопровод Бухара-Урал

Тип топлива: Газ Характер топлива: Газ

Фактический расход топлива (В, В')

B = 355.591 тыс.м³/год

B' = 17.972 m/c

Котел водогрейный.

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по составу топлива. Топливо газообразное.

Состав топлива

CO = 0 %

 $CO_2 = 0.4 \%$

 $H_2 = 0 \%$

 $H_2S = 0 \%$

 $CH_4 = 94.9 \%$

 $C_2H_6 = 3.2 \%$

 $C_3H_8 = 0.4 \%$

 $C_4H_{10} = 0.1 \%$

 $C_5H_{12} = 0.1 \%$

 $O_2 = 0 \%$ $N_2 = 0.9 \%$

Влагосодержание газообразного топлива, отнесенное к 1 ${
m m}^3$ сухого газа ${
m d}=0.753~{
m r/m}^3$

 $V_o = 0.0476 \cdot (0.5 \cdot \text{CO} + 0.5 \cdot \text{H}_2 + 1.5 \cdot \text{H}_2 \text{S} + \text{Cymma}((\text{m} + \text{n}/4) \cdot \text{C}_\text{m} \text{H}_\text{n}) - \text{O}_2) = 9.73182 \text{ m}^3/\text{m}^3$

 $V_{\scriptscriptstyle B} = 0.01 \cdot (H_2 + H_2 S + 0.5 \cdot \Sigma (n \cdot C_m H_n) + 0.124 \cdot d) + 0.0161 \cdot V_o = 2.178616 \text{ m}^3/\text{m}^3 + 0.0161 \cdot V_o = 2.01616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2.01616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2.01616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2.01616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2.01616 \cdot V_o = 2.016$

 $V_r = 0.01 \cdot (CO_2 + CO + H_2S + \Sigma (m \cdot C_m H_n)) + 0.79 \cdot V_o + N_2/100 + V_B = 10.9137538 \text{ m}^3/\text{m}^3$

 $V_{cr} = V_r + (\alpha_{o}-1) \cdot V_o - V_B = 12.6278658 \text{ m}^3/\text{m}^3$

1. Расчет выбросов оксидов азота при сжигании природного газа

Расчетный расход топлива (Вр, Вр')

 $B_p = B = 355.591 \text{ тыс.м}^3/\text{год}$

 $B_p' = B' = 17.972 \text{ m/c} = 0.017972 \text{ m}^3/\text{c}$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 36.72 \text{ MДж/м}^3$

Удельный выброс оксидов азота при сжигании газа (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 5496 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{τ}, Q_{τ})

 $Q_r = B_p / Time / 3.6 \cdot Q_r = 0.65994 \text{ MBT}$

$$Q_r' = B_p' \cdot Q_r = 0.65993 \text{ MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.03 = 0.0391797 \text{ г/МДж}$

 K_{NO2} ' = 0.0113·(Q_{r} '.0.5)+0.03 = 0.0391797 г/МДж

Коэффициент, учитывающий температуру воздуха (Вt)

Температура горячего воздуха t_{гв} = 360 °C

 $\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1.66$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (βa)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов т= 0 %

 $\beta_r = 0.16 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0~\%$

 $\beta_d = 0.022 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}, M_{NO}, M_{NO}, M_{NO'}, M_{NO2}, M_{NO2'}$)

km = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 355.591 \cdot 36.72 \cdot 0.0391797 \cdot 0.7 \cdot 1.66 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.594458$ t/rog

$$M_{NOx}{'} = B_p{'} \cdot Q_r \cdot K_{NO2}{'} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0.017972 \cdot 36.72 \cdot 0.0391797 \cdot 0.7 \cdot 1.66 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.0300446 \ r/c$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 0.0772795$$
 т/год

$$M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0039058 \text{ r/c}$$

$$M_{NO2} = 0.8 \cdot M_{NOx} = 0.4755664$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 0.0240357 \text{ r/c}$$

2. Расчет выбросов диоксида серы

Расчетный расход натурального топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q4)

Среднее: 0.001 % Максимальное: 0.001 %

Расход топлива (В, В') В = 355.591 т/год (тыс.м³/год) В' = 17.972 г/с (л/с) В $_p$ = (1-q4/100)·В = 355.5874441 т/год (тыс.м³/год)

 $B_p' = (1-q_4/100) \cdot B' \cdot 0.0036 = 0.0647 \text{ T/y (TMC.M}^3/\text{y})$

Массовая концентрация загрязняющих веществ в сухих дымовых газах (C_{SO2}). (рассчитанная)

Стандартный коэффициент избытка воздуха в топке
α₀=1.4

Коэффициент избытка воздуха в топке $\alpha_{r}=1.4$

Измеренная объемная концентрация при коэффициенте избытка воздуха диоксида серы

Средняя (I_{SO2 изм}): 0 ppm(см³/м³)

Максимальная ($I_{SO2 \text{ ивм}}$ '): 0 ppm(см³/м³)

Массовая концентрация диоксида серы при α₀= 1.4

Средняя: $C_{SO2}=I_{SO2 \text{ изм}} \cdot 2.86 \cdot \alpha_T/\alpha_0=0 \text{ мг/нм}^3$

Максимальная: C_{SO2} '= $I_{SO2 \text{ изм}}$ ' · 2.86 · α_r/α_0 =0 мг/нм³

Коэффициент пересчета (кл)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

Выброс диоксида серы (Mso2, Mso2').

 $M_{SO2} = C_{SO2} \cdot V_{cr} \cdot B_p \cdot k_\pi = 0$ т/год

 M_{SO2} ' = C_{SO2} ' · V_{cr} · B_p ' · $k_n = 0$ r/c

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 355.591тыс. м³/год

 $B' = 17.972 \text{ n/c} = 0.01797 \text{ m}^3/\text{c}$

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q_3) :

Среднее: 0.2 %

Максимальное :0.2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Газ. R=0.5

Низшая теплота сгорания топлива (Q_r): 36.72 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $3.672 \text{ г/кг (r/нм}^3)$ или кг/т (кг/тыс.нм 3) Максимальное : $3.672 \text{ г/кг (r/нм}^3)$ или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q_4)

Среднее: 0.001 % Максимальное: 0.001 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 1.3057171$ т/год

 $M_{CO}' = B' \cdot C_{CO} \cdot (1-q_4/100) = 0.0659925 \text{ r/c}$

4. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_{π}) :

 $K_{\text{H}} = 2.6 - 3.2 \cdot (D_{\text{oth}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

 $K_{cT} = K_{cT}'/0.14+1 = 1$

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (Вр):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0179718 \text{ кг/с } (\text{м}^3/\text{c})$

Максимальное: $B_p = B_{H} \cdot (1-q\sqrt{100}) = 0.0179718 \text{ kr/c } (\text{м}^3/\text{c})$

Фактический расход топлива на номинальной нагрузке (B_н): 0.017972 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 36720 кДж/кг (кДж/м³)

Объем топочной камеры (V_{τ}): 2.95 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0179718 \cdot 36720 / 2.95 = 223.7034714 кВт/м³$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0179718 \cdot 36720 / 2.95 = 223.7034714 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_{T} "): 1.15

Среднее: $C_{6\pi}$ ' = 0.000001·((0.11· q_v -7)/Exp(3.5·(α_T ''-1))· K_π · K_p · $K_{c\tau}$)= 0.0000104 мг/м³

Максимальное: $C_{\delta \Pi}$ ' = 0.000001·((0.11· q_v -7)/Exp(3.5·(α_T ''-1))· K_{π} · K_p · $K_{c\tau}$)= 0.0000104 мг/м³

Концентрация бенз(а)пирена, приведенная к избытку воздуха α_{O} =1.4 $C_{\delta\pi}$ = $C_{\delta\pi}$ $\cdot \alpha_{T}$ $\cdot \cdot / \alpha_{O}$

Среднее: 0.0000086 мг/м³

Максимальное: 0.0000086 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_{o} =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.345

Низшая теплота сгорания топлива (Q_r): 36.72 МДж/кт (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 12.6684 \text{ м}^3/\text{кг}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

 $M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_p \cdot k_n$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 355.587 \text{ т/год (тыс.м}^3/год)$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.0647$ т/ч (тыс.м³/ч)

 $C_{\text{бп}} = 0.0000086 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

 $M_{\delta\Pi} = 0.0000086 \cdot 12.668 \cdot 355.5874441 \cdot 0.000001 = 0.00000003854$ т/год

 $\mathbf{M}_{\text{de}} \text{'} = 0.0000086 \cdot 12.668 \cdot 0.0646986 \cdot 0.000278 = 0.00000000195 \text{ r/c}$

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тони пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл» Программа зарегистрирована на: ООО "ЕвроХим-Проект" Регистрационный номер: 01-01-6722

Объект: №81556 Усольский калийный комбинат. Комплекс ствола № 3

Площадка: 1 Цех: 4 Вариант: 0

Название источника выбросов: №110 воздухонагреватель ТС 500 дизель

Источник выделения: №1 Котел № 1

Результаты расчетов

1 00 7	Braibi pacicios		
Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
	*	выброс, г/с	
0301	Азот (IV) оксид	0.0595168	0.008570
0304	Азот (II) оксид	0.0096715	0.001393
0328	Углерод (Сажа)	0.0157657	0.002270
0330	Сера диоксид	0.0580504	0.008359
0337	Углерод оксид	0.0836570	0.012047
0703	Бенз/а/пирен	0.00000001692	0.00000000243

Исходные данные

Наименование топлива: Дизельное топливо I

Тип топлива: Мазут

Характер топлива: Мазут, нефть, диз. топл.

Фактический расход топлива (В, В')

В = 2.176 т/год В' = 15.111 г/с Котел водогрейный.

Расчет выбросов оксидов азота при сжигании мазута

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 2.174$$
 т/год

$$B_p' = B' \cdot (1-q_4/100) = 0.0151 \text{ kg/c}$$

Потери тепла от механической неполноты сгорания (q4):

Среднее: 0.08 % Максимальное: 0.08 %

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 42.62 \text{ MДж/кг}$

Удельный выброс оксидов азота при сжигании мазута (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 40 час

Фактическая тепловая мощность котла по введенному в топку теплу $(Q_{r},Q_{r}{}')$

 $Q_T = B_p/Time/3.6 \cdot Q_r = 0.64352 \text{ MBT}$

$$Q_{r}' = B_{p}' \cdot Q_{r} = 0.64352 \text{ MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.1 = 0.1090648 \text{ г/МДж}$

 $K_{NO2}' = 0.0113 \cdot (Q_{r}'^{0.5}) + 0.1 = 0.1090648 \text{ г/МДж}$

Коэффициент, учитывающий температуру воздуха (βt)

Температура горячего воздуха $t_{\mbox{\tiny FB}} = 60 \,\,^{\circ}{\rm C}$

 $\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1.06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (β_a)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов т= 0 %

 $\beta_r = 0.17 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (Ва)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0 \%$

 $\beta_d = 0.018 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}', M_{NO}, M_{NO}', M_{NO2}, M_{NO2}'$)

km = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = Bp \cdot Q_r \cdot K_{NO2} \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 2.1742592 \cdot 42.62 \cdot 0.1090648 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.0107131$ t/rog

$$M_{NOx}{'} = Bp{'} \cdot Q_r \cdot K_{NO2}{'} \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_r = 0.0150989 \cdot 42.62 \cdot 0.1090648 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.074396 \ r/c$$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.0013927$ т/год

 $M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0096715 \, r/c$

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.0085705$ т/год

 M_{NO2} ' = 0.8 · M_{NOx} ' = 0.0595168 r/c

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 2.176 т/год

B' = 15.111 r/c

Содержание серы в топливе на рабочую массу (Sr, Sr')

 $S_r = 0.2 \%$ (для валового)

 $S_{r}' = 0.2\%$ (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2}')

Тип топлива: Мазут

 $\eta_{SO2}' = 0.02$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц (η_{SO2}): 0.02

Выброс диоксида серы (М_{SO2}, М_{SO2}')

 $M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) = 0.0083593$ т/год

 $M_{SO2}' = 0.02 \cdot B' \cdot S_r \cdot (1 - \eta_{SO2}') \cdot (1 - \eta_{SO2}'') = 0.0580504 \text{ r/c}$

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 2.176 т/год

B' = 15.111 r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q3):

Среднее: 0.2 % Максимальное: 0.2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Мазут. R=0.65

Низшая теплота сгорания топлива (Q_r): 42.62 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $5.5406 \text{ г/кт} (\text{г/нм}^3)$ или кг/т (кг/тыс.нм 3) Максимальное: $5.5406 \text{ г/кт} (\text{г/нм}^3)$ или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 0.08 % Максимальное: 0.08 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 0.0120467$ т/год

 $M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 0.083657 \text{ r/c}$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 2.176 т/год

B' = 15.111 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 0.01 \%$

Для максимально-разового выброса $A_{\rm r}$ = 0.01 %

Доля твердых частиц, улавливаемых в золоуловителях $\nu_{\scriptscriptstyle 3}=0$

Потери тепла от механической неполноты сгорания топлива $q_{4\,y\text{носa}} = 0.08~\%$

Низшая теплота сгорания топлива $Q_r = 42.62 \,\mathrm{MДж/kT}$

4.2. Расчет количества сажи при сжигании мазута (M_{κ}, M_{κ})

 $M_{\kappa} = 0.01 \cdot B \cdot (1 - \nu_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r/32.68) = 0.0022703 \text{ т/год}$

 $M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r/32.68) = 0.0157657 \text{ r/c}$

5. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_a) :

 $K_{\text{A}} = 2.6 - 3.2 \cdot (D_{\text{OTH}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

 $K_{ct} = K_{ct}$ '/0.14+1 = 1

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (B_p):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0150989 \text{ кт/с (м}^3/c)$

Максимальное: $B_p = B_{H} \cdot (1-q_4/100) = 0.0150989 \text{ kT/c } (\text{м}^3/\text{c})$

Фактический расход топлива на номинальной нагрузке (B_н): 0.015111 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 42620 кДж/кг (кДж/м³)

Объем топочной камеры (V_{τ}): 2.95 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0150989 \cdot 42620 / 2.95 = 218.1408798 кВт/м³$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0150989 \cdot 42620 / 2.95 = 218.1408798 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_T "): 1

Период между чистками 24 час. Ко = 2

Котел с паромеханической форсункой. R = 0.75.

Среднее: $C_{6\pi}$ ' = 0.000001 · (R·(0.445 · q_v-28)/Exp(3.5·(α_T ''-1))· K_{π} · K_{p} · $K_{c\tau}$ · K_{o})= 0.0001036 мг/м³

Максимальное: $C_{6\pi}$ ' = 0.000001 (R·(0.445·qv-28)/Exp(3.5·(от''-1))· K_{π} · K_{p} · K_{cr} · K_{o})= 0.0001036 мг/м³

Концентрация бенз(а)пирена, приведенная к избытку воздуха $\alpha_{\rm O}$ =1.4 $C_{\rm б\pi}$ = $C_{\rm 5n}$. $\alpha_{\rm T}$. $\alpha_{\rm C}$

Среднее: 0.000074 мг/м³

Максимальное: 0.000074 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.355

Низшая теплота сгорания топлива (Q_r): 42.62 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 15.1301 \text{ м}^3/\text{кт}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

$$M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_p \cdot k_n$$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 2.174 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.05436 \text{ T/y (TMC.M}^3/y)$

 $C_{\delta n} = 0.000074 \text{ Mg/m}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\pi} = 0.000278$ (для максимально-разового)

 $M_{\delta n} = 0.000074 \cdot 15.13 \cdot 2.1742592 \cdot 0.000001 = 0.00000000243$ т/год

 $M_{\delta n}$ ' = 0.000074 · 15.13 · 0.0543561 · 0.000278 = 0.00000001692 r/c

Программа основана на следующих методических документах:

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов

вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"

- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Соругіght© 1996-2021 Фирма «Интеграл»
Программа зарегистрирована на: ООО "ЕвроХим-Проект"
Регистрационный номер: 01-01-6722

Объект: №0 Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №8 воздухонагреватель ТС 800 Е

Источник выделения: №1 Котел № 1

Результаты расчетов

1 00,00	BIGIDI DUCTOR		
Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
	*	выброс, г/с	
0301	Азот (IV) оксид	0.0301736	0.596996
0304	Азот (II) оксид	0.0049032	0.097012
0337	Углерод оксид	0.1199520	2.373300
0703	Бенз/а/пирен	0.0000000504	0.00000009962

Исходные данные

Наименование топлива: Газопровод Бухара-Урал

Тип топлива: Газ Характер топлива: Газ

Фактический расход топлива (В, В')

B = 646.33 тыс. $M^3/год$

B' = 32.667 n/c

Котел водогрейный.

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по составу топлива. Топливо газообразное.

Состав топлива

CO = 0 %

 $CO_2 = 0.4 \%$

 $H_2 = 0 \%$

 $H_2S = 0 \%$

 $CH_4 = 94.9 \%$

 $C_2H_6 = 3.2 \%$

 $C_3H_8 = 0.4 \%$

 $C_4H_{10} = 0.1 \%$

 $C_5H_{12} = 0.1 \%$

 $O_2 = 0 \%$

 $N_2 = 0.9 \%$

Влагосодержание газообразного топлива, отнесенное к 1 ${
m m}^3$ сухого газа ${
m d}=0.753~{
m r/m}^3$

 $V_o = 0.0476 \cdot (0.5 \cdot \text{CO} + 0.5 \cdot \text{H}_2 + 1.5 \cdot \text{H}_2 \text{S} + \text{Cymma}((\text{m} + \text{n}/4) \cdot \text{C}_\text{m} \text{H}_\text{n}) - \text{O}_2) = 9.73182 \text{ m}^3/\text{m}^3$

 $V_{\scriptscriptstyle B} = 0.01 \cdot (H_2 + H_2 S + 0.5 \cdot \Sigma (n \cdot C_m H_n) + 0.124 \cdot d) + 0.0161 \cdot V_o = 2.178616 \text{ m}^3/\text{m}^3$

 $V_r = 0.01 \cdot (CO_2 + CO + H_2S + \Sigma (m \cdot C_m H_n)) + 0.79 \cdot V_o + N_2/100 + V_B = 10.9137538 \text{ m}^3/\text{m}^3$

 $V_{cr} = V_r + (\alpha_{o}-1) \cdot V_o - V_B = 12.6278658 \text{ m}^3/\text{m}^3$

1. Расчет выбросов оксидов азота при сжигании природного газа

Расчетный расход топлива (Вр, Вр')

 $B_p = B = 646.33 \text{ тыс.м}^3/год$

 $B_p' = B' = 32.667 \text{ m/c} = 0.032667 \text{ m}^3/\text{c}$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 36.72 \text{ MДж/м}^3$

Удельный выброс оксидов азота при сжигании газа (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 5496 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{τ}, Q_{τ}')

 $Q_T = B_p/Time/3.6 \cdot Q_r = 1.19952 \text{ MBT}$

$$Q_r' = B_p' \cdot Q_r = 1.19953 \text{ MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.03 = 0.0423761 \text{ г/МДж}$

 K_{NO2} ' = 0.0113·(Q_{r} '.0.5)+0.03 = 0.0423761 г/МДж

Коэффициент, учитывающий температуру воздуха (Вt)

Температура горячего воздуха $t_{rs} = 60 \, ^{\circ}\mathrm{C}$

 $\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1.06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (βa)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов 1=0%

$$\beta_r = 0.16 \cdot (r^{0.5}) = 0$$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0~\%$

 $\beta_d = 0.022 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}, M_{NO}, M_{NO}, M_{NO'}, M_{NO2}, M_{NO2'}$)

km = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_r = 646.33 \cdot 36.72 \cdot 0.0423761 \cdot 0.7 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.746245$ Thom

$$M_{NOx}{'} = B_p{'} \cdot Q_r{'} \cdot K_{NO2}{'} \cdot \beta_k{'} \beta_t{'} \beta_a{'} (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_n = 0.032667 \cdot 36.72 \cdot 0.0423761 \cdot 0.7 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.037717 \ r/c$$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.0970119$ т/год

 M_{NO} ' = 0.13 · M_{NOx} ' = 0.0049032 r/c

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.596996$ т/год

 M_{NO2} ' = 0.8 · M_{NOx} ' = 0.0301736 г/с

2. Расчет выбросов диоксида серы

Расчетный расход натурального топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q4)

Среднее: 0.001 % Максимальное: 0.001 %

Расход топлива (B, B') $B=646.33\ \text{т/год (тыс.m}^3/\text{год)}$ $B'=32.667\ \text{г/c (л/c)}$ $B_p=(1\text{-}q_4/100)\cdot B=646.3235367\ \text{т/год (тыс.m}^3/\text{год)}$

 $B_p' = (1-q_4/100) \cdot B' \cdot 0.0036 = 0.1176 \text{ T/y (TMC.m}^3/\text{y})$

Массовая концентрация загрязняющих веществ в сухих дымовых газах (C_{SO2}). (рассчитанная)

Стандартный коэффициент избытка воздуха в топке α₀=1.4

Коэффициент избытка воздуха в топке $\alpha_r = 1.4$

Измеренная объемная концентрация при коэффициенте избытка воздуха диоксида серы

Средняя (I_{SO2 изм}): 0 ppm(см³/м³)

Максимальная ($I_{SO2 \text{ ивм}}$ '): 0 ppm(см³/м³)

Массовая концентрация диоксида серы при α₀= 1.4

Средняя: $C_{SO2}=I_{SO2 \text{ изм}} \cdot 2.86 \cdot \alpha_T/\alpha_0=0 \text{ мг/нм}^3$

Максимальная: C_{SO2} '= $I_{SO2 \text{ изм}}$ ' · 2.86 · α_r/α_0 =0 мг/нм³

Коэффициент пересчета (кл)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

Выброс диоксида серы (Mso2, Mso2').

 $M_{SO2} = C_{SO2} \cdot V_{cr} \cdot B_p \cdot k_\pi = 0$ т/год

 M_{SO2} ' = C_{SO2} ' · V_{cr} · B_p ' · $k_n = 0$ r/c

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 646.33тыс. $M^3/год$

 $B' = 32.667 \text{ n/c} = 0.03267 \text{ m}^3/\text{c}$

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q_3) :

Среднее: 0.2 %

Максимальное :0.2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Газ. R=0.5

Низшая теплота сгорания топлива (Q_r): 36.72 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $3.672 \text{ г/кг (r/нм}^3)$ или кг/т (кг/тыс.нм 3) Максимальное : $3.672 \text{ г/кг (r/нм}^3)$ или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 0.001 % Максимальное: 0.001 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 2.3733$ т/год

 $M_{CO}' = B' \cdot C_{CO} \cdot (1-q_4/100) = 0.119952 \text{ r/c}$

4. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_n) :

 $K_{\text{H}} = 2.6 - 3.2 \cdot (D_{\text{oth}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

 $K_{cT} = K_{cT}'/0.14+1 = 1$

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (Вр):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0326667 \text{ кг/с } (\text{м}^3/\text{c})$

Максимальное: $B_p = B_{H} \cdot (1-q_4/100) = 0.0326667 \text{ кг/с (м}^3/c)$

Фактический расход топлива на номинальной нагрузке (B_н): 0.032667 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 36720 кДж/кг (кДж/м³)

Объем топочной камеры (V_{τ}): 5.49 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0326667 \cdot 36720 / 5.49 = 218.4918478 кВт/м³$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0326667 \cdot 36720 / 5.49 = 218.4918478 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_T): 1

Среднее: $C_{6\pi}$ ' = 0.000001·((0.11·q_v-7)/Exp(3.5·(α_T ''-1))· K_{π} · K_p · $K_{c\tau}$)= 0.000017 мг/м³

Максимальное: $C_{\delta \Pi}$ = 0.000001 · ((0.11 · q_v -7)/Exp(3.5 · (α_T ''-1)) · K_{π} · K_p · K_{cr})= 0.000017 мг/м³

Среднее: 0.0000122 мг/м³

Максимальное: 0.0000122 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_{o} =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.345

Низшая теплота сгорания топлива (Q_r): 36.72 МДж/кт (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 12.6684 \text{ м}^3/\text{кт}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

 $M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_p \cdot k_n$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 646.324 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.1176$ т/ч (тыс.м³/ч)

 $C_{\text{бr}} = 0.0000122 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

 $M_{\text{бп}} = 0.0000122 \cdot 12.668 \cdot 646.3235367 \cdot 0.000001 = 0.00000009962$ т/год

 $M_{\text{dit}} = 0.0000122 \cdot 12.668 \cdot 0.1176 \cdot 0.000278 = 0.00000000504 \ \text{r/c}$

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГК ал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл» Программа зарегистрирована на: ООО "ЕвроХим-Проект" Регистрационный номер: 01-01-6722

Объект: №81556 Усольский калийный комбинат. Комплекс ствола № 3

Площадка: 1 Цех: 4 Вариант: 0

Название источника выбросов: №111 Воздухонагреватель ТС 800_ДТ

Источник выделения: №1 Котел № 1

Результаты расчетов

Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
	*	выброс, г/с	
0301	Азот (IV) оксид	0.0941082	0.013551
0304	Азот (II) оксид	0.0152926	0.002202
0328	Углерод (Сажа)	0.0244316	0.003518
0330	Сера диоксид	0.0000675	0.000010
0337	Углерод оксид	0.1296404	0.018668
0703	Бенз/а/пирен	0.0000001365	0.0000000196

Исходные данные

Наименование топлива: Дизельное топливо I

Тип топлива: Мазут

Характер топлива: Мазут, нефть, диз. топл.

Фактический расход топлива (В, В')

B = 3.372 т/год B' = 23.417 г/с

Котел водогрейный.

Расчет выбросов оксидов азота при сжигании мазута

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 3.369$$
 т/год

$$B_p' = B' \cdot (1-q_4/100) = 0.0234 \text{ kg/c}$$

Потери тепла от механической неполноты сгорания (q4):

Среднее: 0.08 % Максимальное: 0.08 %

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 42.62 \text{ MДж/кг}$

Удельный выброс оксидов азота при сжигании мазута (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 40 час

Фактическая тепловая мощность котла по введенному в топку теплу $(Q_{r},Q_{r}{}')$

 $Q_T = B_p/Time/3.6 \cdot Q_r = 0.99722 \text{ MBT}$

$$Q_{r}' = B_{p}' \cdot Q_{r} = 0.99723 \text{ MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.1 = 0.1112843 \text{ г/МДж}$

 $K_{NO2}' = 0.0113 \cdot (Q_{r}'^{0.5}) + 0.1 = 0.1112844$ г/МДж

Коэффициент, учитывающий температуру воздуха (βt)

Температура горячего воздуха $t_{rB} = 60 \, ^{\circ}\mathrm{C}$

 $\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1.06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (β_a)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов т= 0 %

 $\beta_r = 0.17 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0 \%$

 $\beta_d = 0.018 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}', M_{NO}, M_{NO}', M_{NO2}, M_{NO2}'$)

km = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = Bp \cdot Q_r \cdot K_{NO2} \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 3.3693024 \cdot 42.62 \cdot 0.1112843 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.0169392$ t/rog

$$M_{NOx}{'} = Bp{'} \cdot Q_r \cdot K_{NO2}{'} \cdot \beta_1 \cdot \beta_2 \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0.0233983 \cdot 42.62 \cdot 0.1112844 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.1176352 \ r/c$$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.0022021$ т/год

 $M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0152926 \, r/c$

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.0135514$ т/год

 M_{NO2} ' = 0.8 · M_{NOx} ' = 0.0941081 r/c

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 3.372 т/год

B' = 23.417 r/c

Содержание серы в топливе на рабочую массу (Sr, Sr')

 $S_r = 0.00015$ % (для валового)

 S_{r} ' = 0.00015 % (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2}')

Тип топлива: Мазут

 $\eta_{SO2}' = 0.02$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц (η_{SO2}): 0.02

Выброс диоксида серы (M_{SO2}, M_{SO2} ')

 $M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) = 0.0000097$ т/год

 M_{SO2} ' = 0.02·B'·S_r·(1- η_{SO2} ')·(1- η_{SO2} '') = 0.0000675 r/c

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 3.372 т/год

B'=23.417~r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q3):

Среднее: 0.2 % Максимальное: 0.2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Мазут. R=0.65

Низшая теплота сгорания топлива (Q_r): 42.62 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $5.5406 \text{ г/кт} (\text{г/нм}^3)$ или кг/т (кг/тыс.нм 3) Максимальное: $5.5406 \text{ г/кт} (\text{г/нм}^3)$ или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 0.08 % Максимальное: 0.08 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 0.018668$ т/год

 $M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 0.1296404 \text{ r/c}$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 3.372 т/год

B' = 23.417 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 0.001 \%$

Для максимально-разового выброса $A_{\rm r}$ ' = 0.001 %

Доля твердых частиц, улавливаемых в золоуловителях $\nu_{\scriptscriptstyle 3}=0$

Потери тепла от механической неполноты сгорания топлива $q_{4\,\mathrm{yhoca}} = 0.08~\%$

Низшая теплота сгорания топлива $Q_r = 42.62 \,\mathrm{MДж/kT}$

4.2. Расчет количества сажи при сжигании мазута (M_{κ}, M_{κ})

 $M_{\kappa} = 0.01 \cdot B \cdot (1 - \nu_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r/32.68) = 0.0035181 \text{ т/год}$

 $M_{\kappa}' = 0.01 \cdot B' \cdot (1 - v_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r/32.68) = 0.0244316 \text{ r/c}$

5. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_a) :

 $K_{\text{A}} = 2.6 - 3.2 \cdot (D_{\text{OTH}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

 $K_{ct} = K_{ct}$ '/0.14+1 = 1

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (B_p):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0234013 \text{ кт/с (м}^3/c)$

Максимальное: $B_p = B_{H} \cdot (1-q_4/100) = 0.0234013 \text{ кг/с (м}^3/c)$

Фактический расход топлива на номинальной нагрузке (B_н): 0.02342 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 42620 кДж/кг (кДж/м³)

Объем топочной камеры (V_T): 5.49 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0234013 \cdot 42620 / 5.49 = 181.6688291 кВт/м³$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0234013 \cdot 42620 / 5.49 = 181.6688291 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_T "): 1.15

Период между чистками 24 час. Ко =2

Котел с паромеханической форсункой. R = 0.75.

Среднее: $C_{6\pi}$ ' = 0.000001 · (R·(0.445 · q_v-28)/Exp(3.5·(α_T ''-1))· K_{π} · K_{p} · $K_{c\tau}$ · K_{o})= 0.0000469 мг/м³

Максимальное: $C_{6\pi}$ ' = 0.000001 (R·(0.445·qv-28)/Exp(3.5·(от''-1))· K_{π} · K_{p} · K_{cr} · K_{o})= 0.0000469 мг/м³

Концентрация бенз(а)пирена, приведенная к избытку воздуха $\alpha_{\rm O}$ =1.4 $C_{\rm б\pi}$ = $C_{\rm 5n}$. $\alpha_{\rm T}$. $\alpha_{\rm C}$

Среднее: 0.0000385 мг/м³

Максимальное: 0.0000385 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1 кг (1 км 3) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.355

Низшая теплота сгорания топлива (Q_r): 42.62 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 15.1301 \text{ м}^3/\text{кт}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

$$M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_{\rho} \cdot k_{n}$$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 3.369 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.08423 \text{ T/y (TMC.M}^3/\text{y})$

 $C_{6\pi} = 0.0000385 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

 $M_{\delta\pi} = 0.0000385 \cdot 15.13 \cdot 3.3693024 \cdot 0.000001 = 0.00000000196$ т/год

 $M_{\delta rr}$ ' = 0.0000385 · 15.13 · 0.0842338 · 0.000278 = 0.00000001365 r/c

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов

вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"

- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл» Программа зарегистрирована на: ООО "ЕвроХим-Проект" Регистрационный номер: 01-01-6722

Объект: №81556 Усольский калийный комбинат. Комплекс ствола № 3

Площадка: 1 Цех: 4 Вариант: 1

Название источника выбросов: №7 горелка АТ 1100 Е

Источник выделения: №1 Котел № 1

Результаты расчетов

Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год
		выброс, г/с	
0301	Азот (IV) оксид	0,0300234	0,594030
0304	Азот (II) оксид	0,0048788	0,096530
0337	Углерод оксид	0,1194306	2,363008
0703	Бенз/а/пирен	0,00000000339	0,0000006706

Исходные данные

Наименование топлива: Газопровод Бухара-Урал

Тип топлива: Газ Характер топлива: Газ

Фактический расход топлива (В, В')

B = 643,527 тыс. $M^3/год$

B' = 32,525 n/c

Котел водогрейный.

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по составу топлива. Топливо газообразное.

Состав топлива

CO = 0 %

 $CO_2 = 0.4 \%$

 $H_2 = 0 \%$

 $H_2S = 0 \%$

 $CH_4 = 94,9 \%$

 $C_2H_6 = 3,2 \%$

 $C_3H_8 = 0,4 \%$

 $C_4H_{10} = 0.1 \%$

 $C_5H_{12} = 0,1 \%$ $O_2 = 0 \%$

 $O_2 = 0 \%$ $N_2 = 0.9 \%$

Влагосодержание газообразного топлива, отнесенное к 1 ${
m m}^3$ сухого газа ${
m d}=0,753~{
m r/m}^3$

 $V_o = 0.0476 \cdot (0.5 \cdot \text{CO} + 0.5 \cdot \text{H}_2 + 1.5 \cdot \text{H}_2 \text{S} + \text{Cymma}((\text{m} + \text{n}/4) \cdot \text{C}_\text{m} \text{H}_\text{n}) - \text{O}_2) = 9,73182 \text{ m}^3/\text{m}^3$

 $V_{\scriptscriptstyle B} = 0.01 \cdot (H_2 + H_2 S + 0.5 \cdot \Sigma (n \cdot C_m H_n) + 0.124 \cdot d) + 0.0161 \cdot V_o = 2,178616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2,178616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2,178616 \text{ m}^3/\text{m}^3 + 0.01616 \cdot V_o = 2,178616

 $V_r = 0.01 \cdot (CO_2 + CO + H_2S + \Sigma (m \cdot C_m H_n)) + 0.79 \cdot V_o + N_2/100 + V_B = 10.9137538 \text{ m}^3/\text{m}^3$

 $V_{cr} = V_r + (\alpha_{o}-1) \cdot V_o - V_B = 12,6278658 \text{ m}^3/\text{m}^3$

1. Расчет выбросов оксидов азота при сжигании природного газа

Расчетный расход топлива (Вр, Вр')

 $B_p = B = 643,527 \text{ тыс.м}^3/год$

 $B_p' = B' = 32,525 \text{ m/c} = 0,032525 \text{ m}^3/\text{c}$

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 36,72 \text{ MДж/м}^3$

Удельный выброс оксидов азота при сжигании газа (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 5496 час

Фактическая тепловая мощность котла по введенному в топку теплу (Q_{τ}, Q_{τ}')

 $Q_T = B_p/Time/3.6 \cdot Q_r = 1,19432 \text{ MBT}$

$$Q_{r}' = B_{p}' \cdot Q_{r} = 1,19432 \text{ MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.03 = 0.0423492 \text{ г/МДж}$

 K_{NO2} ' = 0.0113·(Q_{r} '.0.5)+0.03 = 0,0423492 г/МДж

Коэффициент, учитывающий температуру воздуха (β_t)

Температура горячего воздуха $t_{rs} = 60 \, ^{\circ}\mathrm{C}$

 $\beta_t = 1 + 0.002 \cdot (t_{\text{\tiny FB}} - 30) = 1,06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (βa)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов т= 0 %

 $\beta_r = 0.16 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (β_d)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0~\%$

 $\beta_d = 0.022 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}, M_{NO}, M_{NO}, M_{NO'}, M_{NO2}, M_{NO2'}$)

 $k\pi = 0.001$ (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = B_p \cdot Q_r \cdot K_{NO2} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_t) \cdot (1 - \beta_d) \cdot k_r = 643,527 \cdot 36,72 \cdot 0,0423492 \cdot 0,7 \cdot 1,06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0,7425377$ t/tom

$$M_{NOx}{'} = B_p{'} \cdot Q_r \cdot K_{NO2}{'} \cdot \beta_k \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0,032525 \cdot 36,72 \cdot 0,0423492 \cdot 0,7 \cdot 1,06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0,0375292 \text{ r/c}$$

$$M_{NO} = 0.13 \cdot M_{NOx} = 0.0965299$$
 т/год

$$M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0048788 \text{ r/c}$$

$$M_{NO2} = 0.8 \cdot M_{NOx} = 0.5940301$$
 т/год

$$M_{NO2}' = 0.8 \cdot M_{NOx}' = 0.0300233 \text{ r/c}$$

2. Расчет выбросов диоксида серы

Расчетный расход натурального топлива (Вр, Вр')

Потери тепла от механической неполноты сгорания (q4)

Среднее: 0,001 % Максимальное: 0,001 %

Расход топлива (В, В') $B=643,527 \text{ т/год (тыс.м}^3\text{/год)}$ B'=32,525 г/с (л/с) $B_p=(1\text{-}q_4/100)\cdot B=643,5205647 \text{ т/год (тыс.м}^3\text{/год)}$

 $B_p' = (1-q_4/100) \cdot B' \cdot 0.0036 = 0.11709 \text{ T/y (TMC.M}^3/\text{y})$

Массовая концентрация загрязняющих веществ в сухих дымовых газах (C_{SO2}). (рассчитанная)

Стандартный коэффициент избытка воздуха в топке
α₀=1.4

Коэффициент избытка воздуха в топке $\alpha_r = 1.4$

Измеренная объемная концентрация при коэффициенте избытка воздуха диоксида серы

Средняя (I_{SO2 изм}): 0 ppm(см³/м³)

Максимальная ($I_{SO2 \text{ изм}}$ '): 0 ppm(см³/м³)

Массовая концентрация диоксида серы при α₀= 1.4

Средняя: $C_{SO2}=I_{SO2 \text{ изм}} \cdot 2.86 \cdot \alpha_T/\alpha_0=0 \text{ мг/нм}^3$

Максимальная: C_{SO2} '= $I_{SO2 \text{ HSM}}$ ' $\cdot 2.86 \cdot \alpha_T/\alpha_0$ =0 мг/нм³

Коэффициент пересчета (кл)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_n = 0.000278$ (для максимально-разового)

Выброс диоксида серы (Mso2, Mso2').

 $M_{SO2} = C_{SO2} \cdot V_{cr} \cdot B_p \cdot k_\pi = 0$ т/год

 M_{SO2} ' = C_{SO2} ' · V_{cr} · B_p ' · $k_n = 0$ r/c

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 643,527тыс. $M^3/год$

 $B' = 32,525 \text{ n/c} = 0,03253 \text{ m}^3/\text{c}$

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q_3) :

Среднее: 0,2 %

Максимальное :0,2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Газ. R=0.5

Низшая теплота сгорания топлива (Q_r): 36,72 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: 3,672 г/кг (г/нм³) или кг/т (кг/тыс.нм³) Максимальное :3,672 г/кг (г/нм³) или кг/т (кг/тыс.нм³)

Потери тепла вследствие механической неполноты сгорания топлива (q₄)

Среднее: 0,001 % Максимальное: 0,001 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 2,3630075$ т/год

 $M_{CO}' = B' \cdot C_{CO} \cdot (1-q_4/100) = 0,1194306 \text{ r/c}$

4. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_n) :

 $K_{\text{H}} = 2.6 - 3.2 \cdot (D_{\text{oth}} - 0.5) = 1$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст.: 0

 $K_{cT} = K_{cT}'/0.14+1 = 1$

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (Вр):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0325247 \text{ кг/с } (\text{м}^3/\text{c})$

Максимальное: $B_p = B_{H} \cdot (1-q_4/100) = 0.0325247 \text{ кг/с (м}^3/c)$

Фактический расход топлива на номинальной нагрузке (B_н): 0,032525 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 36720 кДж/кг (кДж/м³)

Объем топочной камеры (V_T): 5,49 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0325247 \cdot 36720 / 5.49 = 217.5420869 \text{ кВт/м}^3$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0325247 \cdot 36720 / 5,49 = 217,5420869 кВт/м³$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_{T} "): 1,15

Среднее: $C_{6\pi}$ ' = 0.000001 · ((0,11 · q_v -7)/Exp(3.5 · (α_T ''-1)) · K_π · K_p · $K_{c\tau}$)= 0,00001 мг/м³

Максимальное: $C_{\text{бп}}' = 0.000001 \cdot ((0,11 \cdot q_v - 7)/Exp(3.5 \cdot (\alpha_T'' - 1)) \cdot K_{\pi} \cdot K_p \cdot K_{cr}) = 0,00001 \text{ мг/м}^3$

Среднее: 0,0000082 мг/м³

Максимальное: 0,0000082 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1кг (1нм³) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0,345

Низшая теплота сгорания топлива (Q_r): 36,72 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 12,6684 \text{ м}^3/\text{кг}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

 $M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_{p} \cdot k_{n}$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 643,521 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1-q_4/100) \cdot 0.0036 = 0.11709 \text{ T/y (TMC.M}^3/y)$

 $C_{\text{бr}} = 0.0000082 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\Pi} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

 $M_{\text{бп}} = 0,0000082 \cdot 12,668 \cdot 643,5205647 \cdot 0.000001 = 0,00000006706 \text{ т/год}$

 $\mathbf{M}_{\text{dit}}{'} = 0,0000082 \cdot 12,668 \cdot 0,1170888 \cdot 0.000278 = 0,00000000339 \ \text{r/c}$

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тони пара в час или менее 20 ГКал в час»"
- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.

Расчет произведен программой «Котельные до 30 т/час» версия 3.6.61 от 24.05.2021

Copyright© 1996-2021 Фирма «Интеграл» Программа зарегистрирована на: ООО "ЕвроХим-Проект" Регистрационный номер: 01-01-6722

Объект: №81556 Усольский калийный комбинат. Комплекс ствола № 3

Площадка: 1 Цех: 4 Вариант: 0

Название источника выбросов: №111 Воздухонагреватель ТС 1100_ДТ

Источник выделения: №1 Котел № 1

Результаты расчетов

1 wy.1	1 CSYNDTATBI PACTOR					
Код	Наименование выброса	Максимально-разовый	Валовый выброс, т/год			
	*	выброс, г/с				
0301	Азот (IV) оксид	0.0941082	0.013551			
0304	Азот (II) оксид	0.0152926	0.002202			
0328	Углерод (Сажа)	0.0244316	0.003518			
0330	Сера диоксид	0.0000675	0.000010			
0337	Углерод оксид	0.1296404	0.018668			
0703	Бенз/а/пирен	0.0000001365	0.00000000196			

Исходные данные

Наименование топлива: Дизельное топливо I

Тип топлива: Мазут

Характер топлива: Мазут, нефть, диз. топл.

Фактический расход топлива (В, В')

B = 3.372 т/год B' = 23.417 г/с

Котел водогрейный.

Расчет выбросов оксидов азота при сжигании мазута

Расчетный расход топлива (Вр, Вр')

$$B_p = B \cdot (1-q_4/100) = 3.369$$
 т/год

$$B_p' = B' \cdot (1-q_4/100) = 0.0234 \text{ kg/c}$$

Потери тепла от механической неполноты сгорания (q4):

Среднее: 0.08 % Максимальное: 0.08 %

Низшая теплота сгорания топлива (Q_r)

 $Q_r = 42.62 \text{ MДж/кг}$

Удельный выброс оксидов азота при сжигании мазута (K_{NO2}, K_{NO2}')

Котел водогрейный

Время работы котла за год Тіте = 40 час

Фактическая тепловая мощность котла по введенному в топку теплу $(Q_{r},Q_{r}{}')$

 $Q_T = B_p/Time/3.6 \cdot Q_r = 0.99722 \text{ MBT}$

$$Q_{r}' = B_{p}' \cdot Q_{r} = 0.99723 \text{ MBT}$$

 $K_{NO2} = 0.0113 \cdot (Q_T^{0.5}) + 0.1 = 0.1112843 \text{ г/МДж}$

 $K_{NO2}' = 0.0113 \cdot (Q_{r}'^{0.5}) + 0.1 = 0.1112844$ г/МДж

Коэффициент, учитывающий температуру воздуха (β_t)

Температура горячего воздуха $t_{rB} = 60 \, ^{\circ}\mathrm{C}$

 $\beta_t = 1 + 0.002 \cdot (t_{rb} - 30) = 1.06$

Коэффициент, учитывающий влияние избытка воздуха на образование оксидов азота (β_a)

Котел работает в соответствии с режимной картой

 $\beta_a = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов через горелки на образование оксидов азота (β_r)

Степень рециркуляции дымовых газов т= 0 %

 $\beta_r = 0.17 \cdot (r^{0.5}) = 0$

Коэффициент, учитывающий ступенчатый ввод воздуха в топочную камеру (Ва)

Доля воздуха, подаваемого в промежуточную факельную зону $\delta = 0 \%$

 $\beta_d = 0.018 \cdot \delta = 0$

Выброс оксидов азота ($M_{NOx}, M_{NOx}, M_{NO}, M_{NO}, M_{NO'}, M_{NO2}, M_{NO2'}$)

km = 0.001 (для валового)

kп = 1 (для максимально-разового)

 $M_{NOx} = Bp \cdot Q_r \cdot K_{NO2} \cdot \beta_t \cdot \beta_a \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 3.3693024 \cdot 42.62 \cdot 0.1112843 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) \cdot 0.001 = 0.0169392$ t/rog

$$M_{NOx}{'} = Bp{'} \cdot Q_r \cdot K_{NO2}{'} \cdot \beta_1 \cdot \beta_2 \cdot (1 - \beta_r) \cdot (1 - \beta_d) \cdot k_\pi = 0.0233983 \cdot 42.62 \cdot 0.1112844 \cdot 1.06 \cdot 1 \cdot (1 - 0) \cdot (1 - 0) = 0.1176352 \ r/c$$

 $M_{NO} = 0.13 \cdot M_{NOx} = 0.0022021$ т/год

 $M_{NO}' = 0.13 \cdot M_{NOx}' = 0.0152926 \, r/c$

 $M_{NO2} = 0.8 \cdot M_{NOx} = 0.0135514$ т/год

 M_{NO2} ' = 0.8 · M_{NOx} ' = 0.0941081 r/c

2. Расчет выбросов диоксида серы

Расход натурального топлива за рассматриваемый период (В, В')

B = 3.372 т/год

B' = 23.417 r/c

Содержание серы в топливе на рабочую массу (Sr, Sr')

 $S_r = 0.00015$ % (для валового)

 S_{r} ' = 0.00015 % (для максимально-разового)

Доля оксидов серы, связываемых летучей золой в котле (η_{SO2}')

Тип топлива: Мазут

 $\eta_{SO2}' = 0.02$

Доля оксидов серы, улавливаемых в мокром золоуловителе попутно с улавливанием твердых частиц (η_{SO2}): 0.02

Выброс диоксида серы (M_{SO2}, M_{SO2} ')

 $M_{SO2} = 0.02 \cdot B \cdot S_r \cdot (1 - \eta_{SO2}) \cdot (1 - \eta_{SO2}) = 0.0000097$ т/год

 M_{SO2} ' = 0.02·B'·S_r·(1- η_{SO2} ')·(1- η_{SO2} '') = 0.0000675 r/c

3. Расчет выбросов оксида углерода

Расход натурального топлива за рассматриваемый период (В, В')

B = 3.372 т/год

B'=23.417~r/c

Выход оксида углерода при сжигании топлива (Ссо)

Потери тепла вследствие химической неполноты сгорания топлива (q₃):

Среднее: 0.2 % Максимальное: 0.2 %

Коэффициент, учитывающий долю потери тепла вследствие химической неполноты сгорания топлива,

обусловленную наличием в продуктах неполного сгорания оксида углерода (R):

Мазут. R=0.65

Низшая теплота сторания топлива (Q_r): 42.62 МДж/кг (МДж/нм³)

 $C_{CO} = q_3 \cdot R \cdot Q_r$

Среднее: $5.5406 \text{ г/кт} (\text{г/нм}^3)$ или кг/т (кг/тыс.нм 3) Максимальное: $5.5406 \text{ г/кт} (\text{г/нм}^3)$ или кг/т (кг/тыс.нм 3)

Потери тепла вследствие механической неполноты сгорания топлива (q4)

Среднее: 0.08 % Максимальное: 0.08 %

Выброс оксида углерода (Мсо, Мсо')

 $M_{CO} = 0.001 \cdot B \cdot C_{CO} \cdot (1-q_4/100) = 0.018668$ т/год

 $M_{CO}' = 0.001 \cdot B' \cdot C_{CO} \cdot (1-q_4/100) = 0.1296404 \text{ r/c}$

4. Расчет выбросов твердых частиц. (теоретическим методом)

4.1. Данные для расчета количества твердых частиц

Расход натурального топлива (В, В')

B = 3.372 т/год

B' = 23.417 r/c

Зольность топлива на рабочую массу (А_r, А_r')

Для валового выброса $A_r = 0.001 \%$

Для максимально-разового выброса $A_{\rm r}$ ' = 0.001 %

Доля твердых частиц, улавливаемых в золоуловителях $\nu_{\scriptscriptstyle 3}=0$

Потери тепла от механической неполноты сгорания топлива $q_{4\,\mathrm{yhoca}} = 0.08~\%$

Низшая теплота сгорания топлива $Q_r = 42.62 \,\mathrm{MДж/kT}$

4.2. Расчет количества сажи при сжигании мазута (M_{κ}, M_{κ})

 $M_{\kappa} = 0.01 \cdot B \cdot (1 - \nu_3) \cdot (q_{4 \text{ yhoca}} \cdot Q_r/32.68) = 0.0035181 \text{ т/год}$

 M_{κ} ' = 0.01·B'·(1- ν_3)·($q_{4\,yhoca}$ ·Q_r/32.68) = 0.0244316 r/c

5. Расчетное определение выбросов бенз(а)пирена водогрейными котлами.

Коэффициент, учитывающий влияние нагрузки котла на концентрацию бенз(а)пирена в продуктах сгорания (K_a) :

$$K_{\text{д}} = 2.6 - 3.2 \cdot (D_{\text{om}} - 0.5) = 1$$

Относительная нагрузка котла $D_{\text{отн}} = 1$

Коэффициент, учитывающий влияние рециркуляции дымовых газов на концентрацию бенз(а)пирена в продуктах сгорания (K_p)

Степень рециркуляции в дутьевой воздух или кольцевой канал вокруг горелок: 0 %

 $K_p = 4.15 \cdot 0 + 1 = 1$

Коэффициент, учитывающий влияние ступенчатого сжигания на концентрацию бенз(а)пирена в продуктах сгорания (Кст)

Доля воздуха, подаваемая помимо горелок (над ними) Кст: 0

 $K_{ct} = K_{ct}$ '/0.14+1 = 1

Теплонапряжение топочного объема (q_v)

Расчетный расход топлива на номинальной нагрузке (B_p):

Среднее: $B_p = B_H \cdot (1-q_4/100) = 0.0234013 \text{ кт/с (м}^3/c)$

Максимальное: $B_p = B_{H} \cdot (1-q_4/100) = 0.0234013 \text{ кг/с (м}^3/c)$

Фактический расход топлива на номинальной нагрузке (B_н): 0.02342 кг/с (м³/с)

Низшая теплота сгорания топлива (Q_r): 42620 кДж/кг (кДж/м³)

Объем топочной камеры (V_{τ}): 5.49 м³

Теплонапряжение топочного объема (q_v)

Среднее: $q_v = B_p \cdot Q_r / V_T = 0.0234013 \cdot 42620 / 5.49 = 181.6688291 кВт/м³$

Максимальное: $q_v = B_p \cdot Q_r / V_T = 0.0234013 \cdot 42620 / 5.49 = 181.6688291 \text{ кВт/м}^3$

Концентрация бенз(а)пирена (Сби')

Коэффициент избытка воздуха на выходе из топки (α_T''): 1.15

Период между чистками 24 час. Ко = 2

Котел с паромеханической форсункой. R = 0.75.

Среднее: $C_{6\pi}$ ' = 0.000001·(R·(0.445·q_v-28)/Exp(3.5·(α_T''-1))· K_{π} · K_{p} · K_{cr} · K_{o})= 0.0000469 мг/м³

Максимальное: $C_{6\pi}$ ' = 0.000001 (R·(0.445·qv-28)/Exp(3.5·(от''-1))· K_{π} · K_{p} · K_{cr} · K_{o})= 0.0000469 мг/м³

Концентрация бенз(а)пирена, приведенная к избытку воздуха $\alpha_{\rm O}$ =1.4 $C_{\rm б\pi}$ = $C_{\rm 5n}$. $\alpha_{\rm T}$. $\alpha_{\rm C}$

Среднее: 0.0000385 мг/м³

Максимальное: 0.0000385 мг/м³

Расчет объема сухих дымовых газов при нормальных условиях (α_o =1.4), образующихся при полном сгорании 1 кг (1 км 3) топлива . (V_{cr})

Расчет производится по приближенной формуле

Коэффициент, учитывающий характер топлива (К): 0.355

Низшая теплота сгорания топлива (Q_r): 42.62 МДж/кг (МДж/нм³)

 $V_{cr} = K \cdot Q_r = 15.1301 \text{ м}^3/\text{кт}$ топлива (м $^3/\text{м}^3$ топлива)

Выброс бенз(а)пирена ($M_{\text{би}}, M_{\text{би}}$ ')

$$M_{\delta n} = C_{\delta n} \cdot V_{cr} \cdot B_p \cdot k_n$$

Расчетный расход топлива (Вр, Вр')

 $B_p = B \cdot (1-q_4/100) = 3.369 \text{ т/год (тыс.м}^3/\text{год)}$

 $B_p' = B' \cdot (1 - q_4/100) \cdot 0.0036 = 0.08423 \text{ T/y (TMC.M}^3/\text{y})$

 $C_{6\pi} = 0.0000385 \text{ MT/M}^3$

Коэффициент пересчета (k_п)

 $k_{\rm H} = 0.000001$ (для валового)

 $k_{\rm H} = 0.000278$ (для максимально-разового)

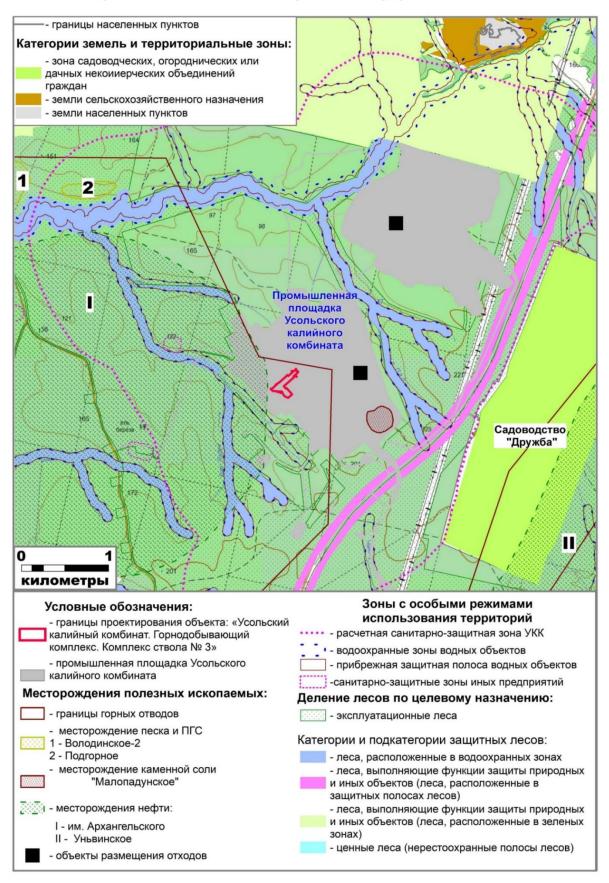
 $M_{\delta\pi} = 0.0000385 \cdot 15.13 \cdot 3.3693024 \cdot 0.000001 = 0.00000000196$ т/год

 $M_{\delta rr}$ ' = 0.0000385 · 15.13 · 0.0842338 · 0.000278 = 0.00000001365 r/c

- 1. «Методика определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час», Москва, 1999. Утверждена Госкомэкологии России 09.07.1999 г.
- 2. Методическое письмо НИИ Атмосфера № 335/33-07 от 17.05.2000 "О проведении расчетов выбросов

вредных веществ в атмосферу по «Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью до 30 тонн пара в час или менее 20 ГКал в час»"

- 3. Методическое письмо НИИ Атмосфера № 838/33-07 от 11.09.2001 «Изменения к методическому письму НИИ Атмосфера № 335/33-07 от 17.05.2000»
- 4. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух (Дополненное и переработанное), НИИ Атмосфера, Санкт-Петербург, 2012 г.
- 5. Отчет о научно-исследовательской работе по договору №35/1-17 «Методическое сопровождение воздухоохранной деятельности» от 15 августа 2017 г., НИИ Атмосфера, Санкт-Петербург, 2017 г.


Приложение Ш (обязательное)

Карты-схемы для оценки воздействия на окружающую среду

Ш.1 Карта-схема экологических ограничений природопользования

Карта-схема экологических ограничений природопользования

Ш.2 Ситуационная карта-схема с расположением расчетных точек